Fundamentos de ingeniería estructural para estudiantes de arquitectura. Rafael Riddell Carvajal

Чтение книги онлайн.

Читать онлайн книгу Fundamentos de ingeniería estructural para estudiantes de arquitectura - Rafael Riddell Carvajal страница 5

Серия:
Издательство:
Fundamentos de ingeniería estructural para estudiantes de arquitectura - Rafael Riddell Carvajal

Скачать книгу

estándar de latitud y altitud. Pero un kilogramo-masa para las mismas condiciones pesa 9,8 Newtons, de acuerdo a la Ec. 1-3, luego

      Simplemente entonces, el kilogramo-peso y el Newton son unidades de peso diferentes: una persona que pesa 60 kilos también puede responder que pesa 588 Newtons. Para evitar la confusión entre kilogramo-masa, que se abrevia kg, y kilogramo-peso o kilogramo-fuerza, se han sugerido las designaciones kgp o kgf para éstos últimos, sin embargo ello no ha prosperado y en la práctica también se designan simplemente por kg. En este texto se entenderá que siempre el kilogramo a secas, abreviado kg, se refiere a una unidad de fuerza; cuando la distinción es delicada, como en los problemas dinámicos que requieren trabajar con masas, se harán las precisiones pertinentes.

       Ejemplo 1.2

      Determinar la fuerza de atracción recíproca entre dos masas de 400 kg cada una separadas 1 metro entre sus centros.

      Solución: Aplicar la fórmula

      Como puede apreciarse la atracción es muy pequeña: aproximadamente una milésima de gramo-peso. Estas fuerzas tienen la dirección de la línea que une los centros de los cuerpos.

      Una fuerza tiene tres propiedades: magnitud, dirección y sentido, las que deben ser simultáneamente especificadas para su correcta individualización (Fig. 1.3). La magnitud, o módulo, indica el tamaño o intensidad de la fuerza, por ejemplo, fuerzas de 100 kg, 200 kg y 1.000 kg tienen distinta magnitud. Gráficamente la magnitud se indica mediante la longitud del trazo que la representa, adoptando, si es necesario, una escala determinada. La dirección de la fuerza corresponde a su línea de acción, que es la recta en el espacio donde reside la fuerza. El sentido indica hacia qué extremo de la línea de acción apunta la fuerza, lo que se designa gráficamente por una punta de flecha.

      La fuerza es un ente que corresponde a lo que en matemáticas se denomina una cantidad vectorial, que se diferencia de las cantidades llamadas escalares en que estas últimas tienen como única propiedad la magnitud. Ejemplos de cantidades escalares son volumen, masa, temperatura, peso ($), las que se pueden sumar y restar directamente como cantidades algebraicas. Ejemplos de cantidades vectoriales, aparte de las fuerzas, son, entre otras, velocidad, aceleración y posición en el espacio. Las operaciones con estas cantidades involucran sus tres propiedades, de modo que deben definirse reglas especiales diferentes al álgebra elemental, como se presentará en las Secciones siguientes.

      Figura 1.3 Modelo de fuerza

      En la Sección 1.2 se fundamentó la causa del peso de los cuerpos como la fuerza con que la Tierra los atrae. Este tipo de fuerzas, siempre presentes en las estructuras, se denominan cargas gravitacionales, las que obviamente tienen dirección vertical y sentido hacia abajo. Entre éstas se distinguirán las llamadas de peso propio o peso muerto y las cargas de uso o sobrecargas o cargas vivas. Las cargas de peso propio comprenden todas las cargas permanentes sobre la estructura: el peso propio de los materiales de obra gruesa y terminaciones, y todas las cargas inmóviles de larga duración, como por ejemplo la tierra de relleno de una jardinera del balcón de un edificio. Las sobrecargas comprenden, en el caso de edificios, las personas y el mobiliario. En otras obras, como puentes, la sobrecarga es el tráfico vehicular; en un embalse o en un muro de contención, la carga de uso es la presión del agua o el empuje del terreno respectivamente. Los valores de las sobrecargas para diseño son en general valores extremos, para condiciones extremas de uso de relativamente baja probabilidad de ocurrencia en la vida útil de la estructura (ver Tabla V.1).

      Otro grupo importante de cargas son las llamadas ambientales. Entre ellas se encuentran los efectos del viento, sismos, temperatura y nieve, aunque esta última es por cierto también de tipo gravitacional. Las cargas de viento y sismo, y en ciertos casos la nieve, se denominan también cargas eventuales, porque corresponden a acciones que son de ocurrencia esporádica.

      El viento es una masa de aire que se desplaza con cierta velocidad que al chocar con las construcciones genera presiones y succiones sobre las superficies que recorre. Estas fuerzas dependen de la forma del cuerpo expuesto al viento, ya que aquél puede ofrecer mayor o menor resistencia al paso de éste, y son perpendiculares a las superficies del cuerpo (Fig. 1.4). Las fuerzas de viento dependen de su velocidad, la que aumenta con la altura sobre el nivel del terreno, y de la ubicación de la construcción: en la ciudad, a campo abierto, o frente al mar.

      El movimiento del suelo durante un terremoto, tanto en el plano horizontal como en la dirección vertical, ocasiona deformaciones en las estructuras, las que producen esfuerzos internos en los elementos estructurales resistentes. En forma muy simplificatoria, la acción del sismo sobre un edificio puede asimilarse a un conjunto de fuerzas laterales equivalentes, como muestra la Fig. 1.5. Típicamente, para un edificio la mayor preocupación es el efecto lateral u horizontal del sismo, ya que generalmente hay más que suficiente resistencia vertical que ha debido proveerse para soportar las cargas gravitacionales.

      Figura 1.4 Efecto del viento sobre una construcción

      Figura 1.5 Solicitaciones sísmicas en edificios: a) Caso real, b) Fuerzas laterales equivalentes

      En general, las cargas sobre una estructura no se deciden en forma arbitraria, sino hay normas que las especifican. Entre ellas cabe mencionar las siguientes normas chilenas: la NCh1537.Of86 que especifica las cargas permanentes y sobrecargas de uso para el diseño estructural de edificios, la NCh431.Of77 que especifica las sobrecargas de nieve, la NCh432.Of71 para el cálculo de la acción del viento sobre las construcciones, y la NCh433.Of96 para el diseño sísmico de edificios.

      Entre las cargas ambientales se mencionó la temperatura. Aunque hay diversas fuentes calóricas, se han clasificado estas cargas así, ya que la fuente primordial de calor es la energía solar, e inversamente, su ausencia genera enfriamiento. El aumento de temperatura genera dilatación de los cuerpos, y su disminución contracción. Si se opone resistencia a estos cambios de volumen, se producen fuerzas que pueden llegar a ser extraordinariamente grandes, tan grandes que pueden producir la rotura de los cuerpos afectos a ellas. Por ello se proveen juntas de dilatación en estructuras y pavimentos, para permitir que las deformaciones térmicas ocurran libremente y no se generen fuerzas. En los puentes se provee un apoyo móvil, montando uno de sus extremos sobre un soporte de material elastomérico, para permitir el cambio de longitud de la estructura (Fig. 1.6). Similar a la temperatura es el efecto de retracción del hormigón, que corresponde a una disminución de su volumen, muy rápida en las primeras etapas del fraguado, pero que continúa por meses y años durante toda la vida del hormigón. Cuando hay oposición a la retracción natural del hormigón, aparecen fuerzas de tracción en él, las que ocasionan la aparición de fisuras, que no son otra cosa que expresión de la rotura del hormigón por tracción, esfuerzo para el cual este material es particularmente débil.

      Figura 1.6 Apoyos de un puente

Скачать книгу