Manures and the principles of manuring. Charles Morton Aikman

Чтение книги онлайн.

Читать онлайн книгу Manures and the principles of manuring - Charles Morton Aikman страница 19

Автор:
Серия:
Издательство:
Manures and the principles of manuring - Charles Morton Aikman

Скачать книгу

earths, metallic oxides, and saline compounds, though necessary in the vegetable economy, must be considered as of less importance, particularly in their relation to agriculture, than the other principles."

      Further on: "It will be asked, Are the pure earths in the soil merely active as mechanical or indirect chemical agents, or do they actually afford food to the plant?"

      This question he answers by saying that "water, and the decomposing animal and vegetable matter existing in the soil, constitute the true nourishment of plants; and as the earthy parts of the soil are useful in retaining water, so as to supply it in the proper proportion to the roots of the vegetables, so they are likewise efficacious in producing the proper distribution of the animal or vegetable matter. When equally mixed with it, they prevent it from decomposing too rapidly; and by their means the soluble parts are supplied in proper proportions."

      Value of Davy's Lectures.

      The chief value of these lectures is due to the fact that they form the first attempt to connect in a systematic manner the various scattered facts, up to that time ascertained, and to interpret their bearing on agricultural practice. We have in them, it is true, a strange mixture of facts belonging rather to botany and physiology than to agricultural chemistry; still they undoubtedly furnished a great impetus to inquiry, and at the same time they did much to popularise the science.

      But not merely did Davy summarise and systematise the various results arrived at by others, he also made many valuable contributions to the science himself. The conclusions he drew from the results he obtained were, no doubt, in many cases false, and in other cases exaggerated; still the results possess a permanent interest. He may be said to have worked out many of the most important physical or mechanical properties of a soil, although exaggerating the importance of the influence of these properties on the question of fertility.[10]

      These experiments had to do with the heat- and water-absorbing powers of a soil. He experimented on a brown fertile soil, and a cold barren clay, and found at what rate they lost heat. "Nothing," he says, "can be more evident than that the genial heat of the soil, particularly in spring, must be of the highest importance to the rising plant; … so that the temperature of the surface, when bare and exposed to the rays of the sun, affords at least one indication of the degree of the fertility."

      Again he says: "The power of soils to absorb water from air is much connected with fertility. … I have compared the absorbent powers of many soils, with respect to atmospheric moisture, and I have always found it greatest in the most fertile soils; so that it affords one method of judging of the productiveness of land."

      Where he erred was in overestimating the functions of the mechanical properties of a soil, and in considering fertility to be due to them alone.

      During the next thirty years or so, little progress seems to have been made in the way of fresh experimentation.

      In 1834, Boussingault,[11] the most distinguished French agricultural chemist of the century, began that series of brilliant chemico-agricultural experiments on his estate at Bechelbronn, in Alsace, the results of which have added so much to agricultural science. It was the first instance of the combination of "science with practice," of the institution of a laboratory on a farm; a combination peculiarly fitted to promote the interests of agricultural science, and an example which has been since followed with such magnificent results in the case of Sir John Lawes's famous Rothamsted Experiment Station, and other less known research stations.

      Boussingault's first paper appeared in 1836, and was entitled, "The amount of nitrogen in different kinds of foods, and on the equal value of foods founded on these data."

      In the year following other papers were published on such subjects as the amount of gluten in different kinds of wheat; on the meteorological considerations of how far various agricultural operations—such as extensive clearings of wood, the draining of large swamps, &c.—influence of climate on a country; and on experiments on the culture of the vine.

      Boussingault was the first observer to study the scientific principles underlying the system of rotation of crops. In 1838 he published the results of some very elaborate experiments he had carried out on this subject. He also was the first chemist to carry out elaborate experiments with a view to deciding the question of the assimilation by plants of free atmospheric nitrogen. His first contribution to the subject was published in 1838, but can scarcely be regarded as possessing much scientific value, except in so far as it stimulated further research. Some thirteen years later he returned to this question; and during the years 1851–1855 carried out most elaborate experiments, the results of which, until quite recently, were generally regarded as having, along with the experiments of Messrs Lawes, Gilbert, and Pugh, definitely settled the question.[12]

      In 1839 Boussingault was elected a member of the French Institute, an honour paid to him in recognition of his great services to agricultural chemistry.[13]

      The foregoing is a brief epitome of the history of the development of agricultural chemistry up to the year 1840, the year which witnessed the publication of one of the most memorable works on the subject, which has appeared during the present century—Liebig's first report to the British Association, a work which may be described as constituting an epoch in the history of the science. Liebig's position as an agricultural chemist was so prominent, and his influence as a teacher so potent, that a few biographical facts may not be out of place before entering upon an estimate of his work.

      Liebig.

      His First Report to British Association.

      The report above referred to was made by Liebig at the request of the Chemical Section of the British Association. It was read to a meeting of the Association held in Glasgow in 1840, and was subsequently published in book form, under the title of 'Chemistry in its Application to Agriculture and Physiology,' Liebig's position, past training and experience were such as to peculiarly fit him for the part of pioneer in the new science. As Sir J. H. Gilbert has remarked,[14] "In the treatment of his subject he not only called to his aid the previously existing knowledge directly bearing upon his subject, but he also turned to good account the more recent triumphs of organic chemistry, many of which had been won in his own laboratory."

      In his dedication to the British Association at the beginning of the book, Liebig says: "Perfect agriculture is the true

Скачать книгу