Nanotechnology in Plant Growth Promotion and Protection. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Nanotechnology in Plant Growth Promotion and Protection - Группа авторов страница 18

Nanotechnology in Plant Growth Promotion and Protection - Группа авторов

Скачать книгу

with their differences."/>

      2.3.2 Root Exposure

      2.3.3 Seed Exposure

      TiO2NPs were also used in the evaluation of their efficacy in seed germination of agriculturally important plants. Both laboratory and greenhouse trials found positive effects of TiO2NPs on seed germination at various concentrations, however, they showed variations depending on plant species. TiO2NPs are thus considered as priming agents (Haghighi and Teixeira da Silva 2014). The reported positive effects mainly include increased water absorption in spinach (Zheng et al. 2005) and flax (Clément et al. 2013) through an increase in length and weight of rape, tomato, and onion seedlings (Su et al. 2009; Haghighi and Teixeira da Silva 2014). Both time duration and concentration of nanoparticles are important factors when seeds were soaked in suspensions of TiO2NPs (Su et al. 2009). Soaking of seeds is also more effective than direct application of nanoparticles to soil with seed planting (Haghighi and Teixeira da Silva 2014). The effect of TiO2NPs on seed germination is concentration‐dependent, higher concentrations were found to have a negative effect on seed germination (Ruffini Castiglione et al. 2011). Higher concentrations might induce moisture stress and negatively affect water and oxygen uptake (Laware and Raskar 2014).

      2.3.4 Interaction of TiO2NPs with Plants

      TiO2NPs are considered to be plant‐growth stimulants (Liu and Lal 2015; Faraz et al. 2020; Kolenčík et al. 2020; Sun et al. 2020). The response of plants to these nanoparticles occurs on many levels. Physiologically, it was observed both positive and negative response in growth parameters like root and shoot length, dry and fresh weight, the content of chlorophylls, gluten and starch, and seed production (Zheng et al. 2005; Asli and Neumann 2009; Ruffini Castiglione et al. 2011; Larue et al. 2012b; Jaberzadeh et al. 2013; Raliya et al. 2015a,b).

      Leaf growth and transpiration may be affected via physical effects such as clogging which hinder root water transport (Asli and Neumann 2009) although there are few studies demonstrating that TiO2NPs promote water uptake (Zheng et al. 2005; Clément et al. 2013; Jaberzadeh et al. 2013). Promotion of root growth may therefore happen not only because of the improved conditions by TiO2NPs but also as an avoidance mechanism arising from the stress caused by nanoparticles (Barrena et al. 2009; Feizi et al. 2013b).

      However, the application of TiO2NPs at high concentrations was found to be toxic. The decreased growth was accompanied by a lowered mitotic index, increase in reactive oxygen species, antioxidant activity, and genotoxicity (Rafique et al. 2015). In microalgae, the genotoxicity is connected with the absence of an intact nucleus (Dalai et al. 2013). Ghosh et al. (2010) simply reported DNA damage in N. tabacum.

      TiO2NPs also affect the uptake and homeostasis of essential elements. It was proposed that the accumulation of essential elements like Cu and Fe was significantly higher under influence of pristine TiO2NPs (Tan et al. 2017). Kužel et al. (2003) reported a similar effect on homeostasis in plants grown with dissolved Ti4+ citrate. The proposed mechanism involved suggested that Ti causes apparent Fe deficiency resulting in upregulation of transport of divalent ions and accumulation of Fe, Zn, and possibly also Cu. A higher conversion of inorganic nitrogen to its organic form was observed in spinach (Yang et al. 2006) and a higher accumulation of K and P was also observed in cucumber treated with TiO2NPs (Servin et al. 2013).

      Both dissolved elements and some nanoparticles, including TiO2NPs, have concentration‐dependent behavior. The concentration range for positive or negative effects may be largely affected by the size and surface of particles and the means of application. Different plant species are also more or less tolerant of different concentrations of TiO2NPs. There were few general trends already well established for dissolved elements, a similar pattern was observed in the case of TiO2NPs. The application of low concentrations does not show any observable positive effects. At a certain higher concentration range positive effects show up. However, a further increase in concentration induces toxicity. The toxicity is often dependent on concentration and higher concentrations lead to higher toxicity (Kořenková et al. 2017). There are also some nano‐specific behaviors. The higher concentrations of TiO2NPs may induce enhanced aggregation of particles and the increased size of aggregates may lead to lower toxicity in hydroponic experiments (Clément et al. 2013; Kořenková et al. 2017). In a hydroponic experiment conducted by Kořenková et al. (2017), the concentration of TiO2NPs used between 150 and 600 mg/L led to a significant reduction in root length with concentration. However, at 1000 mg/L, the length increased as compared to plants grown at 400 and 600 mg/L.

Скачать книгу