Лекции о Лейбнице. 1980, 1986/87. Жиль Делёз

Чтение книги онлайн.

Читать онлайн книгу Лекции о Лейбнице. 1980, 1986/87 - Жиль Делёз страница 27

Автор:
Жанр:
Серия:
Издательство:
Лекции о Лейбнице. 1980, 1986/87 - Жиль Делёз

Скачать книгу

становление; идея предела этого становления; идея, что бесконечное множество малых величин приближается к пределу: все это рассматривается как понятия, о чистоте которых говорить невозможно; стало быть, они в реальном смысле не аксиоматичны и не аксиоматизируются. Итак, с самого начала, будь то у Лейбница, будь то у Ньютона или у их последователей, идея дифференциального исчисления неотделима и не отделяется от множества понятий, которые считаются нестрогими и ненаучными. Да и сами Лейбниц и Ньютон готовы это признать. И лишь в конце XIX и в начале XX века дифференциальное исчисление, или анализ бесконечно малых, получит строго научный статус, но какой ценой?

      Из него изгонят все ссылки на идею бесконечного; из него изгонят все ссылки на идею предела; из него изгонят все ссылки на идею стремления к пределу. Кто же это сделает? Дифференциальному исчислению дадут весьма любопытные интерпретацию и статус, так как оно перестанет работать с обычными величинами, и ему придадут сугубо порядковую интерпретацию. А значит, это будет способом исследования конечного, конечного как такового. И сделает это величайший математик: Вейерштрасс. Но происходит это очень поздно. И вот он создает аксиоматику исчисления, но какой ценой? Сегодня, когда мы занимаемся дифференциальным исчислением, мы больше не делаем никаких ссылок на понятия бесконечного, предела и тенденции приближения к пределу. У нас статическая интерпретация. В дифференциальном исчислении больше нет никакого динамизма. Господствует статическая и порядковая интерпретация исчисления. Прочтите хотя бы книгу Вюйемена «Философия алгебры» (Vuillemin, «Philosophie de l’algèbre»).

      Этот факт очень важен для нас, поскольку необходимо как следует показать, что дифференциальные отношения – да, но даже до аксиоматизации все математики были согласны с тем, что дифференциальное исчисление как метод исследования бесконечного было условностью, о чистоте которой говорить невозможно, и Лейбниц первым сказал это, но даже в этот момент необходимо знать, каково здесь символическое значение. Аксиоматические отношения и отношения дифференциальные: спасибо, не надо. Здесь есть оппозиция.

      Бесконечное совершенно изменило смысл и природу и в конце концов оказалось полностью изгнано.

      Дифференциальные отношения типа DY : DX таковы, что мы получаем их из X и Y.

      В то же время нельзя сказать, что DY не отличается от Y, это бесконечно малая величина; и нельзя сказать, что DX не отличается от X, это бесконечно малая величина по отношению к X.

      Зато DY : DX есть нечто.

      Но это – нечто совершенно иное, нежели Y : X.

      Например, если Y : X обозначает кривую, то D : DX обозначает касательную.

      И притом не какую угодно касательную.

      Итак, я бы сказал, что дифференциальные отношения таковы, что они не обозначают ничего конкретного по отношению к тому, из чего они произведены, то есть по отношению к X и к Y, однако они обозначают некое иное

Скачать книгу