Лекции о Лейбнице. 1980, 1986/87. Жиль Делёз

Чтение книги онлайн.

Читать онлайн книгу Лекции о Лейбнице. 1980, 1986/87 - Жиль Делёз страница 30

Автор:
Жанр:
Серия:
Издательство:
Лекции о Лейбнице. 1980, 1986/87 - Жиль Делёз

Скачать книгу

остальные, как говорит Лейбниц, имеют двойника, маленького близнеца. На самом деле, xy имеет зеркало, образ в x1y1, и вы можете приближаться к AB с разными степенями исчезающих различий: только AB будет единственным, без близнеца. Второй пункт: об AB можно сказать, что это максимум или минимум: максимум по отношению к одной из дуг окружности, минимум по отношению к другой. Уф, вы всё поняли. Я бы сказал, что AB есть сингулярность.

      Я ввел простейший пример с кривой: дугу окружности. А вот нечто посложнее: показанное мною состоит в том, что сингулярная точка не обязательно привязана к экстремуму или ограничена им, она вполне может находиться в середине, и в данном случае находится в середине. И это будет то минимум, то максимум, то оба сразу. Отсюда важность исчисления, которое Лейбниц продвинет очень далеко и которое он назовет исчислением максимумов и минимумов; и даже сегодня это исчисление имеет колоссальное значение, например в феноменах симметрии, в физических и оптических явлениях. Итак, я бы сказал, что моя точка A есть сингулярная точка; все остальные точки обычные, или регулярные. Они бывают обычными, или регулярными, двумя способами: дело в том, что они располагаются ниже максимума и выше минимума, и, наконец, у каждой существует двойник. Итак, мы немного уточняем это понятие обычного.

      А вот другой случай; вот сингулярность другого случая: возьмите сложную кривую. Что мы назовем ее сингулярностями? Сингулярности сложной кривой – это в простейшем случае соседние точки, а вы знаете, что понятие соседства в математике, которое весьма отличается от понятия смежности, есть ключевое понятие для всей области топологии, и как раз понятие сингулярности способно объяснить нам, что такое соседство, – итак, по соседству с некоей сингулярностью нечто изменяется: кривая возрастает или убывает. Эти точки роста или убывания я и назову сингулярностями. Обычное – это ряд, это то, что находится между двумя сингулярностями; речь идет о соседстве той сингулярности, которая располагается рядом с другой сингулярностью: вот что называется обычным, или регулярным.

      Вы видите, что эти отношения очень странны (словно свадьбы): разве так называемая классическая философия в каком-то относительном смысле не связала свою судьбу с классическими геометрией, арифметикой и алгеброй, то есть с прямолинейными фигурами, а те – с ней? Вы мне скажете, что прямолинейные фигуры уже включают сингулярные точки, – согласен, но стоит мне обнаружить и построить математическое отношение сингулярности, как я могу сказать, что в простейших прямолинейных фигурах его не было. Никогда простейшие прямолинейные фигуры не давали мне серьезного повода и реальной необходимости вводить понятие сингулярности. Это навязывает себя лишь на уровне сложных кривых. Стоит мне найти нечто подобное на уровне сложных кривых, тогда да, я отступаю, и я могу сказать: ага, это уже было в дуге окружности, это уже было в такой простой фигуре, как прямолинейный квадрат, но прежде – вы не сможете.

Скачать книгу