Bioprospecting of Microorganism-Based Industrial Molecules. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов страница 40

Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов

Скачать книгу

(2016). Superoxide ion: generation and chemical implications. Chemical Reviews 116 (5): 3029–3085.

      24 24 Devasagayam, T.P.A., Tilak, J.C., Boloor, K.K. et al. (2004). Free radicals and antioxidants in human health: current status and prospects. Japi 52 (794804): 4.

      25 25 Fisher, G.J., Quan, T., Purohit, T. et al. (2009). Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase‐1 in fibroblasts in aged human skin. The American Journal of Pathology 174 (1): 101–114.

      26 26 Birkedal‐Hansen, H.W.G.I., Moore, W.G.I., Bodden, M.K. et al. (1993). Matrix metalloproteinases: a review. Critical Reviews in Oral Biology and Medicine 4 (2): 197–250.

      27 27 Forrester, S.J., Kikuchi, D.S., Hernandes, M.S. et al. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research 122 (6): 877–902.

      28 28 Haas, R.H. (2019). Mitochondrial dysfunction in aging and diseases of aging. Biology 8: 48.

      29 29 Wiley, C.D., Velarde, M.C., Lecot, P. et al. (2016). Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metabolism 23 (2): 303–314.

      30 30 Serrano, M., Lin, A.W., McCurrach, M.E. et al. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88 (5): 593–602.

      31 31 Ghosh, K. and Capell, B.C. (2016). The senescence‐associated secretory phenotype: critical effector in skin cancer and ageing. Journal of Investigative Dermatology 136 (11): 2133–2139.

      32 32 Smogorzewska, A. and de Lange, T. (2002). Different telomere damage signalling pathways in human and mouse cells. The EMBO Journal 21 (16): 4338–4348.

      33 33 Munro, J., Barr, N.I., Ireland, H. et al. (2004). Histone deacetylase inhibitors induce a senescence‐like state in human cells by a p16‐dependent mechanism that is independent of a mitotic clock. Experimental Cell Research 295 (2): 525–538.

      34 34 Kligman, L.H. (1986). Photoaging: manifestations, prevention, and treatment. Dermatologic Clinics 4 (3): 517–528.

      35 35 Rhodes, A.R., Albert, L.S., Barnhill, R.L., and Weinstock, M.A. (1991). Sun‐induced freckles in children and young adults. A correlation of clinical and histopathologic features. Cancer 67 (7): 1990–2001.

      36 36 Fisher, G.J., Datta, S.C., Talwar, H.S. et al. (1996). Molecular basis of sun‐induced premature skin ageing and retinoid antagonism. Nature 379 (6563): 335–339.

      37 37 Kim, H.H., Lee, M.J., Lee, S.R. et al. (2005). Augmentation of UV‐induced skin wrinkling by infrared irradiation in hairless mice. Mechanisms of Ageing and Development 126 (11): 1170–1177.

      38 38 Hatsukami, D.K., Stead, L.F., and Gupta, P.C. (2008). Tobacco addiction. The Lancet 371 (9629): 2027–2038.

      39 39 Ernster, V.L., Grady, D., Miike, R. et al. (1995). Facial wrinkling in men and women, by smoking status. American Journal of Public Health 85 (1): 78–82.

      40 40 Yin, L., Morita, A., and Tsuji, T. (2003). Tobacco smoke extract induces age‐related changes due to modulation of TGF‐β. Experimental Dermatology 12: 51–56.

      41 41 Krutmann, J., Bouloc, A., Sore, G. et al. (2017). The skin ageing exposome. Journal of Dermatological Science 85 (3): 152–161.

      42 42 Schikowski, T. and Hüls, A. (2020). Air pollution and skin aging. Current Environmental Health Reports 7 (1).

      43 43 Brinkmann, V., Ale‐Agha, N., Haendeler, J., & Ventura, N. (2019). The Aryl Hydrocarbon Receptor (AhR) in the Aging Process: Another Puzzling Role for This Highly Conserved Transcription Factor. Frontiers in Physiology, 10.

      44 44 Singh, J., Sharma, D., Kumar, G., and Sharma, N.R. (eds.) (2018). Microbial Bioprospecting for Sustainable Development. Springer.

      45 45 Waites, M.J., Morgan, N.L., Rockey, J.S., and Higton, G. (2009). Industrial Microbiology: An Introduction. Wiley.

      46 46 Sanghvi, G., Patel, H., Vaishnav, D. et al. (2016). A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation. International Journal of Biological Macromolecules 87: 256–262.

      47 47 Maier, R.M. and Soberon‐Chavez, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology 54 (5): 625–633.

      48 48 Becker, L.C., Bergfeld, W.F., Belsito, D.V. et al. (2009). Final report of the safety assessment of hyaluronic acid, potassium hyaluronate, and sodium hyaluronate. International Journal of Toxicology 28: 5–67.

      49 49 Marcellin, E., Steen, J.A., and Nielsen, L.K. (2014). Insight into hyaluronic acid molecular weight control. Applied Microbiology and Biotechnology 98 (16): 6947–6956.

      50 50 Allemann, I.B. and Baumann, L. (2008). Hyaluronic acid gel (Juvéderm™) preparations in the treatment of facial wrinkles and folds. Clinical Interventions in Ageing 3 (4): 629.

      51 51 Tzellos, T.G., Klagas, I., Vahtsevanos, K. et al. (2009). Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Experimental Dermatology 18 (12): 1028–1035.

      52 52 Ganceviciene, R., Liakou, A.I., Theodoridis, A. et al. (2012). Skin anti‐ageing strategies. Dermato‐endocrinology 4 (3): 308–319.

      53 53 Del Valle, E.M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry 39 (9): 1033–1046.

      54 54 Rajput, K.N., Patel, K.C., and Trivedi, U.B. (2016). β‐Cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnology Research International 2016.

      55 55 Kim, M.H., Sohn, C.B., and Oh, T.K. (1998). Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli. FEMS Microbiology Letters 164 (2): 411–418.

      56 56 Matsuda, H., Ito, K., Taki, A. et al. (1995). U.S. Patent No. 5,447,920. Washington, DC: U.S. Patent and Trademark Office.

      57 57 Chawla, P.R., Bajaj, I.B., Survase, S.A., and Singhal, R.S. (2009). Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology 47 (2): 107–124.

      58 58 Çoban, E.P. and Biyik, H. (2011). Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin‐Scharmm) medium and beet molasses medium. African Journal of Microbiology Research 5 (9): 1037–1045.

      59 59 Mohite, B.V., Salunke, B.K., and Patil, S.V. (2013). Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Applied Biochemistry and Biotechnology 169: 1497–1511.

      60 60 Ioelovich, M. (2008). Cellulose as a nanostructured polymer: a short review. BioResources 3 (4): 1403–1418.

      61 61 Amnuaikit, T., Chusuit, T., Raknam, P., and Boonme, P. (2011). Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Medical Devices (Auckland, NZ) 4: 77.

      62 62 Lephart, E.D. (2019). Equol’s efficacy is greater than astaxanthin for antioxidants, extracellular matrix integrity & breakdown, growth factors and inflammatory biomarkers via human skin gene expression analysis. Journal of Functional Foods 59: 380–393.

      63 63

Скачать книгу