Bioprospecting of Microorganism-Based Industrial Molecules. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов страница 42

Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов

Скачать книгу

(2018). Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications. Molecules 23 (10): 2451.

      102 102 Laurent, L., & Bebot, C. (2018). Cosmetic composition comprising at least one lambda‐carrageenan polysaccharide in combination with at least one specific polyol, and process for the cosmetic treatment of keratin fibers with the composition, and use of the composition for hair care (United States Patent No. US20180296458A1).

      103 103 Pangestuti, R. and Kim, S.‐K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods 3 (4): 255–266.

      104 104 Kidgell, J.T., Magnusson, M., de Nys, R., and Glasson, C.R.K. (2019). Ulvan: a systematic review of extraction, composition and function. Algal Research 39: 101422.

      105 105 Ray, B. and Lahaye, M. (1995). Cell‐wall polysaccharides from the marine green alga Ulva “rigida” (ulvales, Chlorophyta). Extraction and chemical composition. Carbohydrate Research 274: 251–261.

      106 106 Gong, M. and Bassi, A. (2016). Carotenoids from microalgae: a review of recent developments. Biotechnology Advances 34 (8): 1396–1412.

      107 107 Novoveská, L., Ross, M.E., Stanley, M.S. et al. (2019). Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Marine Drugs 17 (11).

      108 108 Fitzpatrick, J.E., High, W.A., and Kyle, W.L. (2018). Discolorations of the skin. In: Urgent Care Dermatology: Symptom‐Based Diagnosis (pp. 441–460) (eds. J.E. Fitzpatrick, W.A. High and W.L. Kyle). Elsevier.

      109 109 Sharif, H.R., Goff, H.D., Majeed, H. et al. (2017). Physicochemical stability of β‐carotene and α‐tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529: 550–559.

      110 110 Polyakov, N.E., Leshina, T.V., Konovalova, T.A., and Kispert, L.D. (2001). Carotenoids as scavengers of free radicals in a Fenton reaction: Antioxidants or pro‐oxidants? Free Radical Biology & Medicine 31 (3): 398–404.

      111 111 Çelik, S.E., Bekdeser, B., Tufan, A.N., and Apak, R. (2017). Modified radical scavenging and antioxidant activity measurement of β‐Carotene with β‐Cyclodextrins complexation in aqueous medium. Analytical Sciences 33 (3): 299–305.

      112 112 Solymosi, K. and Mysliwa‐Kurdziel, B. (2017). Chlorophylls and their derivatives used in food industry and medicine. Mini Reviews in Medicinal Chemistry 17 (13): 1194–1222.

      113 113 Busch, T., Cengel, K.A., and Finlay, J. (2009). Pheophorbide a as a photosensitizer in photodynamic therapy: in vivo considerations. Cancer Biology & Therapy 8 (6): 540–542.

      114 114 Xodo, L.E., Rapozzi, V., Zacchigna, M. et al. (2012). The chlorophyll catabolite pheophorbide as a photosensitizer for photodynamic therapy. Current Medicinal Chemistry 19 (6): 799–807.

      115 115 Pangestuti, R., Siahaan, E.A., and Kim, S.‐K. (2018). Photoprotective substances derived from marine algae. Marine Drugs 16 (11) https://doi.org/10.3390/md16110399.

      116 116 Peng, J., Yuan, J.‐P., Wu, C.‐F., and Wang, J.‐H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs 9 (10): 1806–1828.

      117 117 Shimoda, H., Tanaka, J., Shan, S.‐J., and Maoka, T. (2010). The anti‐pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. The Journal of Pharmacy and Pharmacology 62 (9): 1137–1145.

      118 118 Bermejo Román, R., Alvárez‐Pez, J.M., Acién Fernández, F.G., and Molina Grima, E. (2002). Recovery of pure B‐phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology 93 (1): 73–85.

      119 119 Romay, C. and Gonzalez, R. (2000). Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. Journal of Pharmacy and Pharmacology 52 (4): 367–368.

      120 120 Singh, N.K., Sonani, R.R., Awasthi, A. et al. (2016). Phycocyanin moderates ageing and proteotoxicity in Caenorhabditis elegans. Journal of Applied Phycology 28 (4): 2407–2417.

      121 121 Kim, K.M., Lee, J.Y., I'm, A.‐R., and Chae, S. (2018). Phycocyanin protects against UVB‐induced apoptosis through the PKC α/βII‐Nrf‐2/HO‐1 dependent pathway in human primary skin cells. Molecules 23 (2): 478.

      122 122 Bedoux, G., Hardouin, K., Burlot, A.S., and Bourgougnon, N. (2014). Bioactive components from seaweeds: cosmetic applications and future development. In: Advances in Botanical Research, vol. 71 (ed. N. Bourgougnon), 345–378. Academic Press.

      123 123 Babitha, S., & Kim, E.‐K. (2011). Effect of Marine Cosmeceuticals on the Pigmentation of Skin. In S.‐K. Kim, Marine Cosmeceuticals (pp. 63–66). CRC Press.

      124 124 Chaves‐Peña, P., de la Coba, F., Figueroa, F.L., and Korbee, N. (2020). Quantitative and qualitative HPLC analysis of mycosporine‐like amino acids extracted in distilled water for cosmetical uses in four rhodophyta. Marine Drugs 18 (1): 27.

      125 125 Li, B., Lu, F., Wei, X., and Zhao, R. (2008). Fucoidan: structure and bioactivity. Molecules 13 (8): 1671–1695.

      126 126 Pielesz, A. and Paluch, J. (2014). Fucoidan as an inhibitor of thermally induced collagen glycation examined by acetate electrophoresis. Electrophoresis 35 (15): 2237–2244.

      127 127 Fujimura, T., Tsukahara, K., Moriwaki, S. et al. (2000). Effects of natural product extract on contraction and mechanical properties of fibroblast populated collagen gel. Biological & Pharmaceutical Bulletin 23 (3): 291–297.

      128 128 Smit, N., Vicanova, J., and Pavel, S. (2009). The hunt for natural skin whitening agents. International Journal of Molecular Sciences 10 (12): 5326–5349.

      129 129 Jesumani, V., Du, H., Pei, P. et al. (2020). Comparative study on skin protection activity of polyphenol‐rich extract and polysaccharide‐rich extract from Sargassum vachellianum. PLoS One 15 (1): e0227308.

      130 130 Bagal Kestwal, D.R., Pan, M.H., and Chiang, B.‐H. (2019). Properties and applications of gelatin, pectin, and carrageenan gels. In: Bio Monomers for Green Polymeric Composite Materials (eds. P. Visakh, O. Bayraktar and G. Menon), 117–140. Wiley. https://doi.org/10.1002/9781119301714.ch6.

      131 131 Kozlowska, J., Pauter, K., and Sionkowska, A. (2018). Carrageenan‐based hydrogels: effect of sorbitol and glycerin on the stability, swelling and mechanical properties. Polymer Testing 67: 7–11.

      132 132 Thevanayagam, H., Mohamed, S.M., and Chu, W.‐L. (2014). Assessment of UVB‐photoprotective and antioxidative activities of carrageenan in keratinocytes. Journal of Applied Phycology 26 (4): 1813–1821.

      133 133 Ariga, O., Okamoto, N., Harimoto, N., and Nakasaki, K. (2014). Purification and characterization of α‐neoagarooligosaccharide hydrolase from Cellvibrio sp. OA‐2007. Journal of Microbiology and Biotechnology 24 (1): 48–51. https://doi.org/10.4014/jmb.1307.07018.

      134 134 Chen, H.‐M. and Yan, X.‐J. (2005). Antioxidant activities of agaro‐oligosaccharides with different degrees of polymerization in the cell‐based system. Biochimica et Biophysica Acta 1722 (1): 103–111.

      135 135 Orive, G., Hernández,

Скачать книгу