Bioprospecting of Microorganism-Based Industrial Molecules. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов страница 41

Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов

Скачать книгу

of Molecular Sciences 18 (6): 1193.

      64 64 Gopaul, R., Knaggs, H.E., and Lephart, E.D. (2012). Biochemical investigation and gene analysis of equol: a plant and soy‐derived isoflavonoid with antiaging and antioxidant properties with potential human skin applications. BioFactors 38 (1): 44–52.

      65 65 Oyama, A., Ueno, T., Uchiyama, S. et al. (2012). The effects of natural S‐equol supplementation on skin ageing in postmenopausal women: a pilot randomized placebo‐controlled trial. Menopause 19 (2): 202–210.

      66 66 Setchell, K.D., Brown, N.M., and Lydeking‐Olsen, E. (2002). The clinical importance of the metabolite equol – a clue to the effectiveness of soy and its isoflavones. The Journal of Nutrition 132 (12): 3577–3584.

      67 67 Meng, T.X., Zhang, C.F., Miyamoto, T. et al. (2012). The melanin biosynthesis stimulating compounds isolated from the fruiting bodies of Pleurotus citrinopileatus. Journal of Cosmetics. Dermatological Sciences and Applications 2 (03): 151.

      68 68 Oh, M.J., Hamid, M.A., Ngadiran, S. et al. (2011). Ficus deltoidea (Mas cotek) extract exerted anti‐melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Archives of Dermatological Research 303 (3): 161–170.

      69 69 Saranraj, P. and Naidu, M.A. (2013). Hyaluronic acid production and its applications a review. International Journal of Pharmaceutical and Biological Archiv 4 (5): 853–859.

      70 70 Dudek‐Makuch, M. and Studzińska‐Sroka, E. (2015). Horse chestnut–efficacy and safety in chronic venous insufficiency: an overview. Revista Brasileira de Farmacognosia 25 (5): 533–541.

      71 71 Kim, S.Y., Go, K.C., Song, Y.S. et al. (2014). Extract of the mycelium of T. matsutake inhibits elastase activity and TPA‐induced MMP‐1 expression in human fibroblasts. International Journal of Molecular Medicine 34 (6): 1613–1621.

      72 72 Ndlovu, G., Fouche, G., Tselanyane, M. et al. (2013). in vitro determination of the anti‐ageing potential of four southern African medicinal plants. BMC Complementary and Alternative Medicine 13 (1): 304.

      73 73 Thomas, N.V., Manivasagan, P., and Kim, S.K. (2014). Potential matrix metalloproteinase inhibitors from edible marine algae: a review. Environmental Toxicology and Pharmacology 37 (3): 1090–1100.

      74 74 Kwak, J.Y., Park, S., Seok, J.K. et al. (2015). Ascorbyl curates as multifunctional cosmeceutical agents that inhibit melanogenesis and enhance collagen synthesis. Archives of Dermatological Research 307 (7): 635–643.

      75 75 Pimentel, F.B., Alves, R.C., Rodrigues, F. et al. (2018). Macroalgae‐derived ingredients for cosmetic industry – an update. Cosmetics 5 (1).

      76 76 Andersen, R.A. (1992). Diversity of eukaryotic algae. Biodiversity and Conservation 1 (4): 267–292.

      77 77 Sahoo, D. and Seckbach, J. (2015). The Algae World. Springer.

      78 78 Kim, S.‐K. and Chojnacka, K. (2015). Marine Algae Extracts: Processes, Products, and Applications. Wiley.

      79 79 Gupta, P.L., Rajput, M., Oza, T. et al. (2019). The eminence of microbial products in the cosmetic industry. Natural Products and Bioprospecting 9 (4): 267–278.

      80 80 de Jesus Raposo, M.F., de Morais, A.M.B., and de Morais, R.M.S.C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs 13 (5): 2967–3028.

      81 81 Saewan, N. and Jimtaisong, A. (2015). Natural products as photoprotection. Journal of Cosmetic Dermatology 14 (1): 47–63.

      82 82 Wang, H.‐M.D., Chen, C.‐C., Huynh, P., and Chang, J.‐S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology 184: 355–362.

      83 83 Sá, A.G.A., de Meneses, A.C., de Araújo, P.H.H., and Oliveira, D.d. (2017). A review on the enzymatic synthesis of aromatic esters used as flavour ingredients for food, cosmetics and pharmaceuticals industries. Trends in Food Science & Technology 69: 95–105.

      84 84 Priyan Shanura Fernando, I., Kim, K.‐N., Kim, D., and Jeon, Y.‐J. (2018). Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Critical Reviews in Biotechnology: 1–15.

      85 85 Wang, H.‐M., Chou, Y.‐T., Wen, Z.‐H. et al. (2013). Novel biodegradable porous scaffold applied to skin regeneration. PLoS One 8 (6): e56330.

      86 86 Wang, J., Jin, W., Hou, Y. et al. (2013). Chemical composition and moisture‐absorption/retention ability of polysaccharides extracted from five algae. International Journal of Biological Macromolecules 57: 26–29.

      87 87 Fabrowska, J., Łęska, B., Schroeder, G., Messyasz, B., & Pikosz, M. (2015). Biomass and extracts of algae as material for cosmetics. In Marine Algae Extracts (eds S.‐K. Kim and K. Chojnacka) (pp. 681–706). Wiley. https://doi.org/10.1002/9783527679577.ch38

      88 88 Pereira, L. (2018). Seaweeds as source of bioactive substances and skin care therapy – cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 5 (4): 68. https://doi.org/10.3390/cosmetics5040068.

      89 89 Qin, Y. (2018). 1 – seaweed bioresources. In: Bioactive Seaweeds for Food Applications (ed. Y. Qin), 3–24. Academic Press.

      90 90 Wijesekara, I., Pangestuti, R., and Kim, S.‐K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers 84 (1): 14–21.

      91 91 El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal 18 (1): 1–25.

      92 92 Kim, J.H., Lee, J.‐E., Kim, K.H., and Kang, N.J. (2018). Beneficial effects of marine algae‐derived carbohydrates for skin health. Marine Drugs 16 (11).

      93 93 Pallela, R., Na‐Young, Y., and Kim, S.‐K. (2010). Anti‐photoaging and photoprotective compounds derived from marine organisms. Marine Drugs 8 (4): 1189–1202.

      94 94 Teas, J. and Irhimeh, M.R. (2017). Melanoma and brown seaweed: an integrative hypothesis. Journal of Applied Phycology 29 (2): 941–948.

      95 95 Song, Y.S., Li, H., Balcos, M.C. et al. (2014). Fucoidan promotes the reconstruction of skin equivalents. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology 18 (4): 327–331.

      96 96 Fitton, J.H., Dell’Acqua, G., Gardiner, V.‐A. et al. (2015). Topical benefits of two fucoidan‐rich extracts from marine macroalgae. Cosmetics 2 (2): 66–81.

      97 97 Li, Y.‐J., Han, Z., Ge, L. et al. (2016). C‐phycocyanin protects against low fertility by inhibiting reactive oxygen species in ageing mice. Oncotarget 7 (14): 17393–17409.

      98 98 Barg, H. (2013). Filler composition comprising beta‐glucans (United States Patent No. US20130196944A1). https://patents.google.com/patent/US20130196944A1/en

      99 99 Yvin, J.‐C., Levasseur, F., and Hud’Homme, F. (1999). Use of laminarin and oligosaccharides derived therefrom in cosmetics and for preparing a skin treatment drug

      100 100 Saito, M. (2005). Porphyran‐containing cosmetic (Patent No. JP2005336148A). https://patents.google.com/patent/JP2005336148A/en

Скачать книгу