Bases ecológicas para el manejo de plagas. Sergio A. Estay
Чтение книги онлайн.
Читать онлайн книгу Bases ecológicas para el manejo de plagas - Sergio A. Estay страница 8
Foster, S. P., Harrington, R., Devonshire, A. L., Denholm, I., Clark, S. J. y Mugglestone, M.A. (1997). Evidence for a possible fitness trade-off between insecticide resistance and the low temperature movement that is essential for survival of UK populations of Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research, 87, 573-579.
Foster, S. P., Woodcock, C. M., Williamson, M. S., Devonshire, A. L., Denholm, I. y Thompson, R. (1999). Reduced alarm response for peach-potato aphids (Myzus persicae) with knock-down resistance to insecticides (kdr) may impose a fitness cost through increased vulnerability to natural enemies. Bulletin of Entomological Research, 89, 133-138.
Foster, S. P., Denholm, I. y Devonshire, A. L. (2000). The ups and downs of insecticide resistance in peach-potato aphids (Myzus persicae) in the UK. Crop Protection, 19, 873-879.
Foster, S. P., Harrington, R., Dewar, A. M., Denholm, I. y Devonshire, A. L. (2002). Temporal and spatial dynamics of insecticide resistance in Myzus persicae (Hemiptera: Aphididae). Pest Management Science, 58, 895-907.
Foster, S. P., Kift, N. B., Baverstock, J., Sime, S., Reynolds, K., Jones, J. E. et al. (2003). Association of MACE-based insecticide resistance in Myzus persicae with reproductive rate, response to alarm pheromone and vulnerability to attack by Aphidius colemani. Pest Management Science, 59, 1169-1178.
Foster, S. P., Denholm, I., Thompson, R., Poppy, G. M. y Powell, W. (2005). Reduced response of insecticide-resistance aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off. Bulletin of Entomological Research, 59, 1-10.
Foster, S. P., Tomiczek, M., Thompson, R., Denholm, I., Poppy, G. M., Kraaijeveld, A. R. y Powell, W. (2007). Behavioural side-effects of insecticide resistance in aphids increase their vulnerability to parasitoid attack. Animal Behaviour, 74, 621-632.
Fuentes-Contreras, E., Figueroa, C. C., Reyes, M., Briones, L. M. y Niemeyer, H. M. (2004). Genetic diversity and insecticide resistance of the Myzus persicae (Hemiptera: Aphididae) populations from tobacco in Chile: evidence for the existence of a single predominant clone. Bulletin of Entomological Research, 94, 11-18.
Fuentes-Contreras, E., Basoalto, E., Sandoval, C., Burgos, R., Leal, C., Pavez, P. y Muñoz, C. (2007a). Evaluación de la eficacia, efecto residual y de volteo de aplicaciones en pretrasplante de insecticidas nicotinoides y mezclas de nicotinoide-piretroide para el control de Myzus persicae (Hemiptera: Aphididae) en tabaco. Agricultura Técnica (Chile), 67, 16-22.
Fuentes-Contreras, E., Reyes, M., Barros, W. y Sauphanor, B. (2007b). Evaluation of azinphosmethyl resistance and activity of detoxifying enzymes in codling moth (Lepidoptera: Tortricidae) from central Chile. Journal of Economic Entomology, 100, 551-556.
Fuentes-Contreras, E., Espinoza, J. L., Lavandero, B. y Ramírez, C. C. (2008). Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. Journal of Economic Entomology, 101, 190-198.
Fuentes-Contreras, E., Silva, A. X., Bacigalupe, L., Foster, S., Unruh, T. y Figueroa, C. C. (2013). Survey of resistance to four insecticides and their associated mechanisms in different genotypes of the green peach aphid (Hemiptera: Aphididae) from Chile. Journal of Economic Entomology, 106, 400-407.
Fuentes-Contreras, E., Basoalto, E., Franck, P., Lavandero, B., Knight, A. L. y Ramírez, C. C. (2014). Measuring local genetic variability in populations of codling moth (Lepidoptera: Tortricidae) across an unmanaged and commercial orchard interface. Environmental Entomology, 43, 520-527.
Groeters, F. R. y Tabashnik, B. E. (2000). Roles of selection intensity, major genes, and minor genes in the evolution of insecticide resistance. Journal of Economic Entomology, 93, 1580-1587.
Hemingway, J. (2000). The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochemistry and Molecular Biology, 30, 1009-1015.
Homem, R. A. y Davies, T. G. (2018). An overview of functional genomic tools in deciphering insecticide resistance. Current Opinion in Insect Science, 27, 103-110.
Homem, R. A., Buttery, B., Richardson, E., Tan, Y., Field, L. M., Williamson, M. S. y Emyr Davies, T. G. (2020). Evolutionary trade-offs of insecticide resistance. The fitness costs associated with target-site mutations in the nAChR of Drosophila melanogaster. Molecular Ecology, 2, 2661-2675.
Hoy, M. A. (1998). Myths, models and mitigation of resistance to pesticides. Philosophical Transactions of the Royal Society of London. Series Biology, 353, 1787-1795.
Kikuchi,Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K. y Fukatsu, T. (2012). Symbiontmediated insecticide resistance. Proceedings of the National Academy of Science U.S.A., 109, 8618-8622.
Kliot, A. y Ghanim, M. (2012). Fitness costs associated with insecticide resistance. Pest Management Science, 68, 1431-1437.
Li, X., Schuler, M. A. y Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231-253.
Liu, X. D. y Guo, H. F. (2019). Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Current Opinion in Insect Science, 33, 84-90.
McKenzie, J. A. (2001). Pesticide resistance. En C. W. Fox, D. A. Roff, y D. J. Fairbairn (Eds.), Evolutionary ecology: concepts and case studies (pp. 347-360). Oxford: Oxford University Press.
Melander, A. L. (1914). Can insects become resistant to sprays? Journal of Economic Entomology, 7, 167-173.
Mota-Sánchez, D., Bills, P. S. y Whalon, M. E. (2002). Arthropod resistance to pesticides: status and overview. En W. B. Wheeler (Ed.), Pesticides in agriculture and the environment (pp. 241-273). New York: Marcel Dekker Inc.
Mota-Sánchez, D., Whalon, M. E., Hollingworth, R. M. y Xue, Q. (2008). Documentation of pesticide resistance in arthropods. En M. E. Whalon, D. Mota-Sánchez y R. M. Hollingworth (Eds.), Global pesticide resistance in arthropods (pp. 32-39). Wallingford: CABI.
Oakeshott, J. G., Home, I., Sutherland, T. D. y Russell, R. J. (2003). The genomics of insecticide resistance. Genome Biology, 4, 202.
Onstad, D. W. (2008). Major issues in insect resistance management. En D. W. Onstad (Ed.), Insect resistance management: biology, economics and prediction (pp. 1-16). London: Academic Press.
Onstad, D. W. y Guse, C. A. (2008). Concepts and complexities of population genetics. In D. W. Onstad (Ed.), Insect resistance management: biology, economics and prediction (pp. 69-88). London: Academic Press.
Oppold, A. M. y Müller, R. (2017). Epigenetics: a hidden target of insecticides. Advances in Insect Physiology, 53, 313-324.
Pietri, J. E. y Liang, D. (2018). The links between insect symbionts and insecticide resistance: causal relationships and physiological tradeoffs. Annals of the Entomological Society of America, 111, 92-97.
Pittendrigh, B. R., Margan, V. M., Sun, L. y Huesing, J. E. (2008). Resistance in the post-genomics age. En D.W. Onstad