Высшая математика. Шпаргалка. Аурика Луковкина

Чтение книги онлайн.

Читать онлайн книгу Высшая математика. Шпаргалка - Аурика Луковкина страница 2

Высшая математика. Шпаргалка - Аурика Луковкина

Скачать книгу

L2 соответственно имеют вид (А1х + В1у + С1) = 0 и (А2х + В2у + С2) = 0, то уравнение пучка: m1(А1х + В1у + С1) + m2(А2х + В2у + С2) = 0. Если прямые L1 и L2 пересекающиеся, то пучок центральный, если прямые параллельны, то и пучок параллельный.

      6. Пусть даны точка М (х1, у1) и прямая, заданная уравнением Ах + Ву + С = 0. Расстояние d от этой точки М до прямой:

      3. Полярные параметры прямой. Нормальное уравнение прямой. Преобразование координат

      Полярными параметрами прямой L будут полярное расстояние р (длина перпендикуляра, проведенного к данной прямой из начала координат) и полярный угол α (угол между осью абсцисс ОХ и перпендикуляром, опущенным из начала координат на данную прямую L). Для прямой, представленной уравнением Ах + Ву + С = 0: полярное расстояние

      полярный угол α

      причем при C > 0 берется верхний знак, при C < 0 – нижний знак, при С = 0 знаки берутся произвольно, но либо оба плюса, либо оба минуса.

      Нормальное уравнение прямой (уравнение в полярных параметрах) (cм. рис. 2): x cosα + y sinα – p = 0. Пусть прямая представлена уравнением вида Ах + Ву + С = 0. Чтобы данное уравнение привести к нормальному виду необходимо последнее разделить на выражение

 (знак берется в зависимости от знака С).

      Рис. 2

      После деления получается нормальное уравнение данной прямой:

      Пусть имеется прямая L, которая пересекает оси координат. Тогда данная прямая может быть представлена уравнением в отрезках х / а + у / b = 1. Справедливо: если прямая представлена уравнением х / а + у / b = 1, то она отсекает на осях отрезки а, b.

      Преобразование координат возможно путем переноса начала координат, или поворотом осей координат, или совместно переносом начала и поворотом осей.

      При переносе начала координат справедливо следующее правило: старая координата точки равна новой, сложенной с координатой нового начала в старой системе. Например, если старые координаты точки М были х, у, а координаты нового начала в старой системе О*(х0, у0), то координаты точки М в новой системе координат с началом в точке О* будут равны х – х0, у – у0 т. е. справедливо следующее х = х* + х0, у = у* + у0 или х* = х – х0, у* = у – у0 (* новые координаты точки).

      При повороте осей на некоторый угол φ справедливы следующие формулы (где х, у – старые координаты точки; х*, у* – новые координаты этой же точки):

      x = x* cosα – y* sinα;

      y = x* sinα + y* cosα

      или

      x* = x cosα + y sinα;

      y* = – x sinα + y cosα.

      4. Порядок алгебраических линий. Окружность. Эллипс. Гипербола. Парабола

      Линия L, представленная в декартовой системе уравнением n–степени называется алгебраической линией n–порядка.

      Окружность

Скачать книгу