Радиотехника. Шпаргалка. Аурика Луковкина
Чтение книги онлайн.
Читать онлайн книгу Радиотехника. Шпаргалка - Аурика Луковкина страница 6
Линейный четырехполюсник характеризуется комплексным коэффициентом передачи:
(25)
Модуль коэффициента передачи К(ω) дает отношение действительных амплитуд выходного и входного напряжений, а аргумент (φк(ω) – изменение начальной фазы выходного напряжения по сравнению с входным.
Пусть требуется обеспечить неискаженную передачу сигнала Uвх(t) через некоторый четырехполюсник Сигнал на выходе будет иметь вид:
(26)
В идеальном случае при прохождении через четырехполюсник все спектральные составляющие входного сигнала должны изменяться по амплитуде в одинаковое число раз k и испытывать одинаковое запаздывание t0 во времени. Для неискаженного воспроизведения сигнала комплексный коэффициент передачи четырехполюсника должен иметь вид:
К(ω) = Кe-ωt0, (27)
т. е. его модуль должен быть одинаковым для всех передаваемых частот (К(ω) = const), а аргумент – представлять собой линейную функцию частоты (φk(ω) = – ωХ0). Зависимость модуля коэффициента передачи от частоты называют амплитудно-частотной (или просто частотной) характеристикой, а от фазы – фазочастотной (или фазовой) характеристикой.
Наряду с требованиями, предъявляемыми к четырехполюсникам в отношении идеальной передачи полезных сигналов с некоторой шириной спектра Δωсигн,необходимо, чтобы коэффициент передачи четырехполюсника вне желаемой частоты обращался в нуль так как любые сигналы, спектр которых находится вне полосы частот полезного сигнала, являются помехами. Идеальный четырехполюсник должен иметь п-образную частотную характеристику.
У реального четырехполюсника форма характеристики отличается от п-образной. Это приводит к искажению сигнала – тем большему, чем сильнее это отличие. Допустимые искажения сигнала и требования к характеристикам K(ω) и φК(ω) зависят от конкретной системы передачи сигнала. В тракте радиовещательного приемника удовлетворительными принято считать четырехполюсники, для которых в рабочей полосе частот коэффициент передачи меняется менее чем в
раз.12. Фильтрующие свойства последовательного колебательного контура
Последовательный контур изображенный на рис. 4 – пример линейного четырехполюсника, который можно использовать в качестве фильтра.
Рис. 4
Входными зажимами фильтра являются зажимы АА', выходными – ВВ'. Коэффициент передачи такого фильтра:
где R – активное сопротивление контура (сопротивление источника ЭДС не учитывается).
Представим числитель и знаменатель в показательной