Vibroacoustic Simulation. Alexander Peiffer

Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 12

Vibroacoustic Simulation - Alexander Peiffer

Скачать книгу

alt="StartLayout 1st Row equals ModifyingAbove u With caret Subscript 0 Baseline e Superscript minus zeta omega 0 t Baseline c o s left-parenthesis left-parenthesis 1 minus zeta right-parenthesis Superscript 1 slash 2 Baseline omega 0 t plus phi 0 right-parenthesis EndLayout"/> (1.14)

      The motion is oscillatory with a frequency that is lower than in the undamped configuration:

       omega Subscript d Baseline equals omega 0 StartRoot 1 minus zeta squared EndRoot equals omega 0 gamma (1.15)

       StartLayout 1st Row ModifyingAbove u With caret Subscript 0 Baseline equals StartFraction StartRoot u 0 squared omega Subscript d Superscript 2 Baseline plus left-parenthesis v Subscript x Baseline 0 Baseline plus zeta omega 0 u 0 right-parenthesis squared EndRoot Over omega Subscript d Baseline EndFraction EndLayout (1.16)

       StartLayout 1st Row phi 0 equals minus arc tangent left-parenthesis StartFraction v Subscript x Baseline 0 Baseline plus zeta omega 0 u 0 Over u 0 omega Subscript d Baseline EndFraction right-parenthesis EndLayout (1.17)

      Figure 1.3 Damped, sinusoidal motion of the underdamped oscillator. Source: Alexander Peiffer.

      1.1.4 The Critically Damped Oscillator (ζ = 1)

      The last case is a transition between both systems. There is only one root s=−ω0, and the solution in Equation (1.4) becomes:

       u left-parenthesis t right-parenthesis equals left-parenthesis upper B 1 plus upper B 2 right-parenthesis e Superscript minus omega 0 t (1.18)

      This solution does not provide enough constants to fulfil the initial conditions, so that we need an extra term te−ω0t:

       u left-parenthesis t right-parenthesis equals left-parenthesis upper B 3 plus upper B 4 t right-parenthesis e Superscript minus omega 0 t (1.19)

      Introducing the initial conditions again, the constants are:

       StartLayout 1st Row upper B 3 equals u 0 EndLayout (1.20)

       StartLayout 1st Row upper B 4 equals v Subscript x Baseline 0 Baseline plus omega 0 u 0 EndLayout (1.21)

      Figure 1.4 Motion of the critically damped oscillator. Source: Alexander Peiffer.

      Let us summarize some facts and observations about free damped oscillators:

      1 Oscillation occurs only if the system is underdamped.

      2 ωd is always less than ω0.

      3 The motion will decay.

      4 The frequency ωd and the decay rate are properties of the system and independent from the initial conditions.

      5 The amplitude of the damped oscillator is u^(t)=u^0e−βt with β=ζω0. β is called the decay rate of the damped oscillator.

      The decay rate is related to the decay time τ. This is the time interval where the amplitude decreases to e−1 of the initial amplitude. Thus, the decay time is:

      1.2 Forced Harmonic Oscillator

      When an external force F^xcos⁡(ωt) is exciting the damped oscillator as shown in Figure 1.1 b), applying Newton’s second law we get for the equation of motion:

      This is an inhomogeneous, linear, second-order equation for u. The solution of this equation is given by a particular solution uP(t) and the solutions of the homogeneous Equation (1.1) uH(t).

       u left-parenthesis t right-parenthesis equals u Subscript upper H Baseline left-parenthesis t right-parenthesis plus u Subscript upper P Baseline left-parenthesis t right-parenthesis (1.24)

      1.2.1 Frequency Response

       ModifyingAbove upper F With caret Subscript x Baseline cosine left-parenthesis omega t plus phi right-parenthesis equals upper R e left-parenthesis bold-italic upper F Subscript x Baseline e Superscript j omega t Baseline right-parenthesis (1.25)

      Figure 1.5 Complex pointer, amplitude and phase relationship. Source: Alexander Peiffer.

      Fx is the complex amplitude of the force, and the Re(⋅) expression is usually omitted. The displacement and velocity response is then given by

      

Скачать книгу