Vibroacoustic Simulation. Alexander Peiffer

Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 14

Vibroacoustic Simulation - Alexander Peiffer

Скачать книгу

denotes a time average. If the signal is harmonic with u(t)=u^cos⁡(ω0t) then

       StartLayout 1st Row 1st Column u Subscript rms 2nd Column equals StartFraction ModifyingAbove u With caret Over StartRoot 2 EndRoot EndFraction 3rd Column u Subscript rms Superscript 2 4th Column equals StartFraction ModifyingAbove u With caret squared Over 2 EndFraction 5th Column Blank EndLayout (1.38)

      1.2.3 Impedance and Response Functions

      So far the frequency response of the oscillator was expressed as the relationship between displacement and force. The ratios u/Fx and D=Fx/u are called mechanical receptance and, respectively. Often used force response relationships are the mechanical impedance impedance ! mechanical (force/velocity=Fx/vx) and the mobility (velocity/force=vx/Fx). The symbols and definitions are:

       Impedance colon bold-italic upper Z equals StartFraction bold-italic upper F Subscript x Baseline Over bold-italic v Subscript x Baseline EndFraction Mobility colon bold-italic upper Y equals StartFraction bold-italic v Subscript x Baseline Over bold-italic upper F Subscript x Baseline EndFraction (1.39)

      Considering the solution of the damped oscillator and vx=jωu both quantities become:

      The real and imaginary part have specific names resistance reactance

       bold-italic upper Z equals upper R plus j upper X Subscript normal upper Z Baseline resistance plus j reactance (1.41)

      Figure 1.9 Magnitude and phase of oscillator impedance. Source: Alexander Peiffer.

      1.2.3.1 Power Balance

      We multiply Equation (1.23) by u˙

      The first and third term can be integrated

       StartFraction d Over d t EndFraction left-parenthesis one-half m ModifyingAbove u With dot squared plus one-half k Subscript s Baseline u squared right-parenthesis plus c Subscript v Baseline ModifyingAbove u With dot squared equals upper F Subscript x Baseline ModifyingAbove u With dot period (1.43)

      The terms in the parenthesis are kinetic and potential energy and known as constant. The expression cvu˙2 is the dissipated power, because it is the damping force times velocity.

       normal upper Pi Subscript diss Baseline equals upper F Subscript x Baseline ModifyingAbove u With dot equals c Subscript v Baseline ModifyingAbove u With dot squared (1.44)

      And Fxu˙ is the introduced power, thus

       normal upper Pi Subscript in Baseline equals upper F Subscript x Baseline ModifyingAbove u With dot (1.45)

      So we get the power balance

      that is fluctuating for harmonic motion but with a net power flow.

       StartLayout 1st Row 1st Column normal upper Pi left-parenthesis t right-parenthesis equals upper F left-parenthesis t right-parenthesis v left-parenthesis t right-parenthesis 2nd Column equals 3rd Column upper R e left-parenthesis bold-italic upper F Subscript x Baseline e Superscript j omega t Baseline right-parenthesis upper R e left-parenthesis bold-italic v Subscript x Baseline e Superscript j omega t Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column equals 3rd Column one-half upper R e left-parenthesis bold-italic upper F Subscript x Baseline e Superscript j omega t Baseline plus bold-italic upper F Subscript x Superscript asterisk Baseline e Superscript minus j omega t Baseline right-parenthesis one-half upper R e left-parenthesis bold-italic v Subscript x Baseline e Superscript j omega t Baseline plus bold-italic v Subscript x Superscript asterisk Baseline e Superscript minus j omega t Baseline right-parenthesis 3rd Row 1st Column Blank 2nd Column equals 3rd Column one-fourth upper R e left-parenthesis bold-italic upper F Subscript x Baseline bold-italic v Subscript x Superscript asterisk Baseline plus bold-italic upper F Subscript x Superscript asterisk Baseline bold-italic v Subscript x Baseline plus bold-italic upper F Subscript x Baseline bold-italic v Subscript x Baseline e Superscript j Baseline 2 omega t Baseline plus bold-italic upper F Subscript x Superscript asterisk Baseline bold-italic v Subscript x Superscript asterisk Baseline e Superscript minus j Baseline 2 omega t Baseline right-parenthesis 4th Row 1st Column Blank 2nd Column equals 3rd Column one-half upper R e left-parenthesis bold-italic upper F Subscript x Baseline bold-italic v Subscript x Superscript asterisk Baseline plus bold-italic upper F Subscript x Baseline bold-italic v Subscript x Baseline e Superscript j Baseline 2 omega t Baseline right-parenthesis EndLayout (1.47)

      The first term in the bracket is constant, the second oscillating with twice the excitation frequency. The first part is called active power and the second part the reactive. All introduced energy in one half cycle comes back in the next half cycle. The time average over one period leaves only the active part

       mathematical left-angle normal upper Pi mathematical right-angle Subscript upper T Baseline equals StartFraction 1 Over upper T EndFraction integral Subscript 0 Superscript upper T Baseline one-half upper R e left-parenthesis bold-italic upper F Subscript x Baseline bold-italic v Subscript x Baseline Superscript asterisk Baseline plus bold-italic upper F Subscript x Baseline bold-italic v Subscript x Baseline e Superscript j Baseline 
						<noindex><p style= Скачать книгу