The Science of Reading. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу The Science of Reading - Группа авторов страница 57

The Science of Reading - Группа авторов

Скачать книгу

interference effects

      If readers analyse the morphemic constituents of printed words, then they might have trouble deciding that a stimulus like quickify (i.e., comprising an existing stem and affix) is not a word. In a seminal study, Taft and Forster (1975) observed that nonwords built of morphemic units (e.g., dejuvenate) are rejected more slowly in lexical decision than nonwords that do not comprise morphemic units (e.g., depertoire). In this example, juvenate is a bound stem meaning “young” (as in juvenile), while pertoire is not a bound stem. Bound stems are stems that cannot occur on their own. These findings were important because they suggested that morphemic analysis is a phenomenon that arises prior to lexical identification.

       Morphological priming effects

      If morphologically complex words are analysed in terms of their constituents (e.g., darkness ‐> [dark] + [‐ness]), then a morphologically complex prime (e.g., darkness) should facilitate subsequent recognition of its constituent stem (e.g., DARK) relative to an unrelated control prime (e.g., darknessDARK vs. fullness – DARK). Priming effects of this nature have been observed extensively, across different priming paradigms and across different languages (see, e.g., Amenta & Crepaldi, 2012; Rastle & Davis, 2008, for reviews).

      Morphologically complex words are morphologically related to their stems (e.g., cleanly, clean), but they are also semantically and orthographically related to their stems. Early studies thus considered the possibility that morphological priming effects might simply reflect a combination of orthographic and semantic priming (Devlin, Jamison, Matthews, & Gonnerman, 2004). However, Rastle and colleagues (2000) provided evidence against this possibility in a series of masked priming experiments. Masked priming is an experimental paradigm in which primes are presented so briefly that they cannot be perceived consciously (Forster & Davis, 1984). These researchers showed that masked priming effects for morphologically related items (e.g., darknessDARK) were significantly greater than those for semantic relatedness (e.g., cello – VIOLIN), orthographic relatedness (e.g., tapestry – APE), or combined semantic and orthographic relatedness (e.g., ghostGHOUL). These findings indicate that there is a special relationship between morphologically related words that goes beyond their combined semantic and orthographic relatedness.

      The question that has provoked most interest over the past 20 years of morphological priming research concerns the role of semantic transparency in morphological decomposition. Marslen‐Wilson and colleagues (1994) reported a series of cross‐modal priming experiments (spoken primes, visual targets) showing that morphologically complex words prime recognition of their stems, but only when there is a semantic relationship between them (e.g., departureDEPART, but not departmentDEPART). These findings led them to conclude that morphologically complex words are represented in terms of their constituents only when the meaning of the whole word can be computed from the meanings of the parts. Visual priming studies using fully visible primes also observed this pattern (Rastle et al., 2000). However, visual masked priming studies in French (Longtin, Segui, & Hallé, 2003) and English (Rastle, Davis, & New, 2004) yielded different results. These studies showed that briefly presented, morphologically structured primes facilitate recognition of their stems, irrespective of whether there is a meaningful relationship between the words. This latter class of item includes morphologically related pairs that have lost their connection over time (e.g., witnessWIT) and pseudo‐morphological pairs that never had a meaningful connection (e.g., cornerCORN). Critically, priming effects for these items were shown to be greater than those for orthographically related items without an apparent morphological structure (e.g., brothelBROTH).

      Research investigating morphological priming effects in children of different ages has suggested that morpho‐orthographic segmentation may reflect a form of reading expertise. Beyersmann and colleagues reported that English speaking (Beyersmann, Castles, & Coltheart, 2012) and French speaking (Beyersmann, Grainger, Casalis, & Ziegler, 2015) primary school children show robust masked morphological priming effects, but only when morphological primes have a semantic relationship with targets. Beyersmann et al. (2012) found no evidence of priming based on the appearance of morphological structure (e.g., cornerCORN) in children between the ages of 8 and 10. Similar findings were observed for Hebrew primary school children between the ages of 9 and 12: Robust masked morphological priming when primes were semantically related to targets, but weak or null priming when they were not (Schiff, Raveh, & Fighel, 2012). These findings suggest that perhaps morpho‐orthographic segmentation is a form of analysis that is acquired only after extensive reading experience. This conclusion is consistent with work by Andrews and Lo (2013) investigating individual differences in masked priming amongst university students. They found that the morpho‐orthographic pattern is modulated by vocabulary and spelling ability, with pseudo‐morphological priming being stronger in people with good spelling skills.

Скачать книгу