Ātrā matemātika verbālās skaitīšanas noslēpumi. Edgars Auziņš
Чтение книги онлайн.
Читать онлайн книгу Ātrā matemātika verbālās skaitīšanas noslēpumi - Edgars Auziņš страница 11
Bet ko darīt, ja desmitnieku skaits ir nepāra. Reiziniet 7 ar 5:
7 x 10 = 70
Ja jums ir grūti uzreiz sadalīt 70 uz pusēm, iedomājieties to kā summu: 60 +10. Tās puse ir 30 +5, kas ir 35.
Apskatīsim citu piemēru:
9 x 5 =
9 reiz 10 ir vienāds ar 90. 90 var uzrakstīt kā 80 +10. Puse no 80 +10 ir 40 +5, tātad atbilde ir 45. Atrisiniet paši:
a) 3 x 5 = __; b) 5 x 5 = __; c) 9 x 5 = __; d) 7 x 5 = __;
Atbildes:
a) 15; b) 25; c) 45; d) 35
Šis ir vienkāršs veids, kā uzzināt skaitļa 5 laika tabulas. Tas darbojas, ja skaitļi tiek reizināti ar 5. Piemēram:
14 x 5 =
14 x 10 = 140, un 140 dalīts ar 2, iegūst 70.
Tāpat:
23 x 5 =
23 x 10 = 230
230 = 220 +10
Puse no 220 +10 ir 110 +5
110 +5 = 115
Visus šos aprēķinus pēc nelielas prakses var izdarīt daudz ātrāk savā galvā.
6. nodaļa Decimālskaitļu reizinājums
Cipari sastāv no cipariem: 0, 1, 2, 3, 4, 5, 6, 7, 8 un 9. Cipari ir kā burti, kurus mēs izmantojam vārdu veidošanai. 23 ir divciparu skaitlis, kas sastāv no cipariem 2 un 3. Cipara atrašanās vieta ciparā nosaka šim ciparam atbilstošo ciparu. Piemēram, skaitlis 2 ciparā 23 atbilst desmitvietai un nozīmē 2 desmitniekus, bet cipars 3 atbilst vienību vietai un nozīmē 3 vienības. 435 ir trīsciparu skaitlis. Skaitlis 4 atbilst simtu vietai un apzīmē 4 simtus jeb 400. Skaitlis 3 atbilst desmitnieku skaitam un apzīmē 3 desmitniekus jeb 30. Skaitlis 5 atbilst vienību skaitam un apzīmē 5 vienības vai vienkārši 5. Kad mēs rakstām skaitli, secībai, kādā uz tā atrodas cipari, nav maza nozīme.
Kad mēs rakstām cenu vai skaitli, kas apzīmē naudas daudzumu, mēs izmantojam komatu, lai atdalītu dolārus no centiem. Piemēram, 1,25 ASV dolāri nozīmē 1 dolāru un 25 dolāra simtdaļas (25 centus). Pirmais cipars aiz komata apzīmē dolāra desmitdaļas (10 10 centu monētas ir vienādas ar 1 USD). Otrais cipars aiz komata apzīmē dolāra simtdaļas (100 centi ir vienāds ar 1 USD).
Decimāldaļu reizināšana [2] nav sarežģītāka darbība par jebkuru citu skaitļu reizināšanu. Apskatīsim piemērus.
Piemēram:
1,3 x 1,4 =
(1,3 – viens punkts un trīs desmitdaļas; 1,4 – viens punkts un četras desmitdaļas.)
Mēs rakstām piemēru tādu, kāds tas ir, bet nepievērš uzmanību komatiem:
Lai gan mēs rakstījām 1,3 x 1,4, mēs atrisināsim piemēru tā, it kā tas izskatītos šādi:
13 x 14 =
Aizmirstiet par komatu un sakiet sev: «Trīspadsmit plus četri ir septiņpadsmit, reizināts ar desmit, simts septiņdesmit. Četras reiz trīs ir divpadsmit. plus simts septiņdesmit. simts astoņdesmit divi».
Risinājuma piemērs izskatās šādi:
Taču mūsu vēlamais produkts bija 1,3 x 1,4, un līdz šim esam aprēķinājuši tikai 13 x 14. Piemērs nav pilnībā atrisināts. Mums ir jāizdomā, kur iegūtajā atbildē ievietot komatu. Lai to izdarītu, apskatīsim faktorus un saskaitīsim ciparu skaitu aiz komata. Aiz komata ir divi cipari: 3 1.3 un 4 1.4. Tā kā mums faktoros kopā ir divi cipari aiz komata, arī atbildē ir jābūt diviem cipariem aiz komata. Saskaitiet divus skaitļus no beigām un ievietojiet komatu starp skaitļiem 1 un 8.
1.82 ATBILDE
Vienkāršs veids, kā pārbaudīt iegūto atbildi, ir novērtēt to ar tuvinājumu. Tas nozīmē, ka tā vietā, lai izmantotu sākotnējos skaitļus (1,3 un 1,4), mēs tos noapaļosim attiecīgi līdz 1 un 1,5. reizinājums 1 x 1,5 dod 1,5. Tātad atbildei, ko mēs meklējam, ir jābūt kaut kur starp 1 un 2, nevis, piemēram, 20 vai 200. Tas ļauj mums zināt, ka esam izvēlējušies pareizo decimāldaļu.
Mēģināsim atrisināt šo piemēru:
9,6 x 97 =
Uzrakstīsim problēmu tā, kā tā ir norādīta, bet pieņemsim, ka runa ir par skaitļiem 96 un 97.
Kur likt komatu? Cik zīmju aiz komata ir piemēru faktoros? Viens. Atbildē ir jābūt tādam pašam ciparu skaitam pēc komata.
931.2 ATBILDE
Lai noteiktu, kur likt decimālzīmi, mums ir jāsaskaita kopējais ciparu skaits aiz komata abiem skaitļiem, kurus mēs reizinām. Neaizmirstiet pārliecināties, ka atbildē ir norādīts vienāds ciparzīmju skaits aiz komata. Mēs varam pārbaudīt atbildi, reizinot 10 (noapaļotā vērtība 9,6) ar 90 (noapaļotā vērtība 97), kas dod 900. Tagad mēs zinām, ka atbildei ir jābūt kaut kur ap skaitli 900. nevis 9000 vai 90..
Ja mēs reizinātu ar 9,6 un 9,7, atbilde būtu 93,12. Šis fakts var palīdzēt mums atrast veidus, kā vēl vairāk vienkāršot aprēķinus, kas citādi nebūtu tik acīmredzami. Drīzumā aplūkosim šīs iespējas. Tagad mēģiniet pats atrisināt šādus piemērus:
a) 1,3 x 1,3 = __; b) 1,4 x 1,4 = __; c) 14 x 0,14 = __; d) 96 x 0,97 = __; e) 0,96 x 9,6 = __; e) 13 x 1,5 = __
Atbildes:
a) 1,69; b) 1,96; c) 1,96; d) 93,12; e) 9,216; e) 19.5
Pieņemsim, ka jums bija jāatrisina šāds piemērs:
0,13 x 0,14 =
Atcerēsimies to:
13 x 14 = 182
Kur jāliek komats? Cik zīmju aiz komata ir abiem faktoriem? Četri: skaitļi 1 un 3 pirmajā faktorā un skaitļi 1 un 4 otrajā. Tāpēc atbildē ir jāskaita četri cipari, sākot no beigām. Mums būs jāpievieno viens cipars, jo mums ir trīsciparu atbilde (182). Tāpēc mēs saskaitām trīs ciparus un pievienojam 0.
Mūsu atbilde tagad izskatās