О том, чего мы не можем знать. Путешествие к рубежам знаний. Маркус дю Сотой
Чтение книги онлайн.
Читать онлайн книгу О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус дю Сотой страница 29
Открытие Ся оспаривает мнение Лапласа о том, что уравнения Ньютона предполагают возможность познания будущего при наличии полного знания настоящего, на самом фундаментальном уровне, потому что даже уравнения Ньютона не могут предсказать, что случится с этой несчастной планетой после того, как она достигнет бесконечной скорости. Теория достигает в этом месте сингулярности, и никакие дальнейшие предсказания не имеют смысла. Как мы увидим на следующих «рубежах», соображения теории относительности ограничивают физическое осуществление такой сингулярности, так как несчастная планета в конце концов достигнет скорости света в вакууме, на которой, как было показано, теория Ньютона является лишь приближенным представлением реальности. И тем не менее этот пример показывает, что для познания будущего одних уравнений недостаточно.
Интересно послушать, что говорил Лаплас на смертном одре. Видя, как его собственная сингулярность приближается к нему, оставляя ему лишь ограниченное время, он тоже признал: «То, что мы знаем, невелико, а то, чего мы не знаем, огромно»[32]. ХХ век показал, что даже если мы узнаем многое, размеры того, чего мы не знаем, останутся огромными.
Оказывается, однако, что непознаваемо не только внешнее поведение планет и игральных костей. Более глубокое внутреннее исследование моей кости из казино порождает новые сомнения в существовании детерминистической Вселенной с часовым механизмом, в которую верил Лаплас. Когда ученые заглянули внутрь игральной кости, чтобы понять, из чего она состоит, они обнаружили, что знание положений и перемещений частиц, составляющих такую кость, невозможно даже теоретически. Как мы увидим на двух следующих «рубежах», даже поведение самих частиц, образующих мою красную игральную кость из Лас-Вегаса, может управляться игрой случая.
Рубеж второй: Виолончель
3
Всякий принимает пределы своего собственного поля зрения за пределы мира.
Когда я начинал учиться в средней школе, наш учитель музыки спросил, хочет ли кто-нибудь из класса научиться играть на музыкальном инструменте. Руки подняли мы трое. Учитель подвел нас к шкафу, чтобы показать, какие инструменты можно выбрать. В совершенно пустом шкафу лежали стопкой три трубы.
– Судя по всему, вы будете учиться играть на трубе.
Я не жалею о своем выборе (хотя никакого выбора и не было). Я отлично провел время, играя в городском оркестре и дурачась в группе медных духовых оркестра
31
Annals of Mathematics 135, 1992: 411–468.
32