О том, чего мы не можем знать. Путешествие к рубежам знаний. Маркус дю Сотой

Чтение книги онлайн.

Читать онлайн книгу О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус дю Сотой страница 31

О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус дю Сотой

Скачать книгу

поколениями для пропаганды новых идей).

      Как бы то ни было, согласно этой истории, он вернулся к себе домой и стал экспериментировать с нотами, получаемыми на струнном инструменте. Взяв вибрирующую струну виолончели, я могу получить непрерывную последовательность нот, постепенно перемещая палец в сторону подставки. Так я получаю звук, называемый глиссандо (хотя на следующем «рубеже» вопрос о том, образуется ли при этом действительно непрерывная последовательность нот, будет поставлен под сомнение). Если я остановлюсь в том положении, в котором получаются ноты, звучащие в гармонии с вибрирующей открытой струной, окажется, что отношение длин этих струн точно равно целому числу.

      Например, прижав пальцем середину вибрирующей струны, я получу ноту, звучащую почти так же, как нота, с которой я начал. Интервал между ними называется октавой, и для человеческого уха эта нота звучит настолько похоже на ноту открытой струны, что в музыкальной нотации мы обозначаем их одним и тем же названием. Если я помещу свой палец в одной трети расстояния от головки грифа, я получу ноту, особенно гармонично звучащую в сочетании с нотой открытой струны. Такой интервал называется чистой квинтой, и наш мозг реагирует на подсознательное узнавание целочисленного отношения длин волн этих двух нот.

      Обнаружив, что в основе гармонии лежат целые числа, пифагорейцы начали строить модель Вселенной, в которой такие целые числа были фундаментальными кирпичиками всего, что они видели и слышали вокруг себя. В греческой космологии царила идея небесной математической гармонии. Считалось, что между орбитами планет существуют идеальные математические соотношения, что и породило идею музыки сфер.

      Для понимания структуры игральной кости важнее то обстоятельство, что ключом к объяснению состава материи пифагорейцы считали дискретные числа, а не непрерывное глиссандо. Они предложили идею атомов, которые подобно числам можно складывать для образования новой материи. Греческий философ и математик Платон, развивая пифагорейскую философию, представил такие атомы дискретными геометрическими элементами.

      Платон полагал, что атомы представляют собой геометрические фигуры, треугольники и квадраты. Из этих элементарных блоков были составлены формы, которые считались основными ингредиентами греческой химии, – элементы, или «стихии» огня, земли, воздуха и воды. Каждая стихия, по мнению Платона, имела собственную трехмерную геометрическую форму.

      Огонь имел форму треугольной пирамиды, или тетраэдра, образованного из четырех равносторонних треугольников. Форма земли была кубической, подобно моей игральной кости из Лас-Вегаса. Воздух был образован из формы, называемой октаэдром, которая состоит из восьми равносторонних треугольников. Она выглядит как две пирамиды, склеенные своими квадратными основаниями. Наконец, вода соответствовала икосаэдру, составленному из двадцати равносторонних треугольников.

Скачать книгу