Энциклопедия финансового риск-менеджмента. Алексей Лобанов
Чтение книги онлайн.
Читать онлайн книгу Энциклопедия финансового риск-менеджмента - Алексей Лобанов страница 24
Если а является элементом множества А, то пишут а ∈ А.
Задать множество можно, либо перечислив все его элементы, либо указав характеристическое свойство, которому должны удовлетворять все элементы этого множества.
Например, запись А = {a1, a2, a3, a4} означает, что множество А состоит из элементов a1, a2, a3, a4.
Множество В всех действительных чисел, удовлетворяющих неравенству х2 – 2х + 3 ≤ 0, можно записать следующим образом:
где R – множество всех действительных чисел.
Множество А называют подмножеством (subset) множества В, если каждый элемент множества А является элементом множества В (рис. 1.13).
Если множество А является подмножеством множества В, то пишут А ⊂ В. Например, множество А = {1, 2, 3} является подмножеством множества В = {1, 2, 3, 4, 5}. Множество Z всех целых чисел является подмножеством множества R всех действительных чисел.
Разностью А\В двух множеств А и В называют множество всех элементов А, не попавших в множество В (рис. 1.14).
Если В ⊂ А, то разность А\В называют дополнением множества В до множества А. Например, если А = {1, 2, 3, 4}, а В = {3, 4, 5, 6}, то А\В = = {1, 2}.
Пересечением двух множеств А и В называют множество, обозначаемое А ∩ B, все элементы которого принадлежат как множеству А, так и множеству В (рис. 1.15).
Например, если А = {1, 2, 3}, а В = {1, 3, 4, 5}, то А ∩ В = {1, 3}.
Если множества А и В не содержат общих элементов, то говорят, что они не пересекаются, и пишут A ∩ B = ∅ (∅ – символ пустого множества).
Аналогично можно определить пересечение трех, четырех и более множеств. В частности, множество
Объединением двух множеств А и В называют множество, обозначаемое А ∪ B, все элементы которого принадлежат хотя бы одному из множеств А и В (рис. 1.16).
Например, если А = {1, 2, 3, 4}, а В = {3, 4, 5, 6}, то А ∪ В = {1, 2, 3, 4, 5, 6}. Точно так же определяется объединение трех, четырех и более множеств. В частности, множество
1.19. Вероятностное пространство
Пусть Ω – некоторое множество. В дальнейшем элементы множества Ω будем называть элементарными событиями, а само множество Ω – пространством элементарных событий.
Набор β подмножеств множества Ω называется σ-алгеброй случайных событий при выполнении следующих трех условий:
Если пространство элементарных событий конечно, т. е. состоит из конечного числа элементарных событий, то в качестве σ-алгебры случайных событий обычно рассматривают набор всех подмножеств этого пространства.
Пример 1.45. Бросается игральная кость. Пространство элементарных событий состоит из 6 событий: