Энциклопедия финансового риск-менеджмента. Алексей Лобанов
Чтение книги онлайн.
Читать онлайн книгу Энциклопедия финансового риск-менеджмента - Алексей Лобанов страница 33
В частности, геометрическим броуновским движением (geometric Brownian motion) является случайный процесс, удовлетворяющий стохастическому дифференциальному уравнению:
Геометрическое броуновское движение, определяемое условиями (1.74) и (1.75), можно найти в явном виде:
Во многих случаях можно считать, что эволюция цены финансовых активов описывается геометрическим броуновским движением. Такое моделирование оказывается достаточно точным, например, в случае обыкновенных акций.
Пример 1.72. Инвестор считает, что цена бездивидендной акции описывается геометрическим броуновским движением с коэффициентом смещения 0,1 и годовой волатильностью 40 %. В данный момент времени цена акции равна 100 долл. Инвестора интересует цена этой акции через месяц.
Эволюцию цены Вτ облигации с нулевым купоном можно описывать с помощью геометрического броуновского движения, лишь когда до погашения облигации остается достаточно много времени. Действительно, в момент погашения Т ее цена всегда равна номиналу, т. е. известна достоверно. Это означает, что
Таким образом, при моделировании эволюции цены облигации с нулевым купоном необходимо учитывать эффект приближения к номиналу (pull to par), а геометрическое броуновское движение этот эффект не учитывает, так как
В общем случае найти решение стохастического дифференциального уравнения (1.71) в явном виде не удается. Поэтому для моделирования траекторий случайного процесса Ито часто применяется метод Монте-Карло.
Чтобы смоделировать траекторию случайного процесса Ито на отрезке [t, Т], этот отрезок разбивается на n равных частей (n должно быть большим), а затем разыгрывается случайная величина ξ, распределенная нормально с параметрами
Указанным выше способом можно построить сколь угодно много траекторий случайного процесса Ито.
1.29. Основы теории экстремальных значений
Дана последовательность независимых одинаково распределенных случайных величин: η1, η2…., ηn…. с функцией распределения F(x).
Можно рассмотреть новую последовательность случайных величин {Mn}, где Mn = max {η1, η2…., ηn….}, n = 1, 2, 3…..
Функция распределения случайной величины Mn определяется следующим образом: