Secondary Metabolites of Medicinal Plants. Bharat Singh

Чтение книги онлайн.

Читать онлайн книгу Secondary Metabolites of Medicinal Plants - Bharat Singh страница 50

Автор:
Жанр:
Серия:
Издательство:
Secondary Metabolites of Medicinal Plants - Bharat Singh

Скачать книгу

callus of garlic. Phytochemistry 27: 2123–2124.

      29 Lee, J. and Mitchell, A.E. (2011). Quercetin and isorhamnetin glycosides in onion (Allium cepa L.): varietal comparison, physical distribution, coproduct evaluation, and long-term storage stability. J. Agric. Food Chem. 59: 857–863.

      30 Lee, J.B., Miyake, S., Umetsu, R. et al. (2012). Antifluenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chem. 134: 2164–2168.

      31 Li, Q.-Q., Zhou, S.-D., and He, X.-J. (2010). Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 106: 709–733.

      32 Mahmoudabadi, A.Z. and Nasery, M.K.G. (2009). Antifungal activity of shallot, Allium ascalonicum L. (Liliaceae), in vitro. J. Med. Plant Res. 3: 450–453.

      33 Malab, G.S.S., Aspuria, E.T., and Bernardo, E.L. (2017). Ultraviolet-B induced flavonoid production in in vitro cultures of shallot (Allium cepa var. Aggregatum G. Don cv Batanes). J. ISSAAS 23: 146–157.

      34 Matsuura, H., Ushiroguchi, T., Itakura, Y. et al. (1988). A furostanol glycoside from garlic, bulbs of Allium sativum L. Chem. Pharm. Bull. 36: 3659–3663.

      35 Mimaki, Y., Kuroda, M., Fukasawa, T., and Yutaka Sashida, Y. (1999). Steroidal saponins from the bulbs of Allium karataviense. Chem. Pharm. Bull. 47: 738–743.

      36 Mimaki, Y., Kawashima, K., Kanmoto, T., and Sashida, Y. (1993). Steroidal glycosides from Allium albopilosum and A. ostrowskianum. Phytochemistry 34: 799–805.

      37 Mimaki, Y., Nikaido, T., Matsumoto, K. et al. (1994). New steroidal saponins from the bulbs of Allium giganteum exhibiting potent inhibition of cAMP phosphodiesterase activity. Chem. Pharm. Bull.(Tokyo) 42: 710–714.

      38 Mogren, L.M., Olsson, M.E., and Gertsson, U.E. (2006). Quercetin content in field-cured onions (Allium cepa L.): effects of cultivar, lifting time, and nitrogen fertilizer level. J. Agric. Food Chem. 54: 6185–6191.

      39 Mskhiladze, L., Legault, J., Lavoie, S. et al. (2008). Cytotoxic steroidal saponins from the flowers of Allium leucanthum. Molecules 13: 2925–2934.

      40 Nencini, C., Cavallo, F., Capasso, A. et al. (2007). Evaluation of antioxidative properties of Allium species growing wild in Italy. Phytother. Res. 21: 874–878.

      41 Olayeriju, O.S., Olaleye, M.T., Crown, O.O. et al. (2015). Ethylacetate extract of red onion (Allium cepa L.) tunic affects hemodynamic parameters in rats. Food Sci. Human Wellness 4: 115–122.

      42 Pârvu, M., Pârvu, A.E., Rosca-Casian, O. et al. (2010). Antifungal activity of Allium obliquum. J. Med. Plant Res. 4: 138–141.

      43 Pârvu, M., Rosca-Casian, O., Puscas, M., and Groza, G. (2009). Antifungal activity of Allium fistulosum L. Contrib. Bot. 44: 125–129.

      44 Pobłocka-Olech, L., Daniel, G.D., Żebrowska, M.E. et al. (2016). TLC determination of flavonoids from different cultivars of Allium cepa and Allium ascalonicum. Acta Pharma. 66: 543–554.

      45 Pudzianowska, M., Gajewski, M., Przybył, J.L. et al. (2012). Influence of storage conditions on flavonoids content and antioxidant activity of selected shallot (Allium cepa var. ascalonicum backer) hybrid cultivars. Veg. Crop. Res. Bull. 77: 101.

      46 Ranjan, S., Jadon, V.S., Sharma, N. et al. (2010). Anti-inflammatory and analgesic potential of leaf extract of Allium stracheyi. J. Appl. Sci. Res. 6: 139–143.

      47 Ren, G., Sias, H.X., Yang, J., and Thou, C.X. (2010). Protective effects of steroids from Allium chinense against H2O2 induced oxidative stress in rat cardiac H9C2 cells. Phytother. Res. 24: 404–409.

      48 Sang, S.-M., Zou, M.-L., Zhang, X.-W. et al. (2001). New spirostanol saponins from Chinese chives (Allium tuberosum). J. Agric. Food Chem. 49: 4780–4783.

      49 Sang, S.-M., Zou, M.-L., Zhang, X.-W. et al. (2002). Tuberoside M, a new cytotoxic spirostanol saponin from the seeds of Allium tuberosum. J. Asian Nat. Prod. Res. 4: 67–70.

      50 Siddiq, M., Roidoung, S., Sogi, D.S., and Dolan, K.D. (2013). Total phenolics, antioxidant properties and quality of fresh-cut onions (Allium cepa L.) treated with mild-heat. Food Chem. 136: 803–806.

      51 Stajner, D., Canadanovic-Brunet, J., and Pavlovic, A. (2004). Allium schoenoprasum L., as a natural antioxidant. Phytother. Res. 18: 522–524.

      52 Turnbull, A., Galpin, I., Smith, J., and Collin, H. (1981). Comparison of the onion plant (Allium cepa) and onion tissue culture. New Phytol. 87: 257–268.

      53 Vlase, L., Parvu, M., Parvu, E.A., and Toiu, A. (2013). Chemical constituents of three Allium species from Romania. Molecules 18: 114–127.

      54 Ye, C.-L., Dai, D.-H., and Hu, W.-L. (2013). Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.). Food Control 30: 48–53.

      55 Zolfaghari, B., Shokoohinia, Y., Ramezanlou, P. et al. (2012). Effects of methanolic and butanolic fractions of Allium elburzense Wendelbo bulbs on blood glucose level of normal and STZ-induced diabetic rats. Res. Pharm. Sci. 7: 201–207.

      56 Zou, Z.-M., Yu, D.-Q., and Cong, P.-Z. (2001). A steroidal saponin from the seeds of Allium tuberosum. Phytochemistry 57: 1219–1222.

      2.10.1 Ethnopharmacological Properties and Phytochemistry

      The plant Aloe vera (Fam. – Liliaceae) is used in Ayurvedic, homoeopathic, and allopathic systems of medicine and not only in tribal community but also by most of the people for food and medicine (Grindlay and Reynolds 1986; Mothana and Linclequist 2005). The plant leaves contain numerous vitamins, minerals, enzymes, amino acids, natural sugars, and other bioactive compounds with emollient, purgative, antimicrobial, anti-inflammatory, anticancer, antioxidant, aphrodisiac, anthelmintic, antifungal, antiseptic, and cosmetic values for health care (Lawrence et al. 2009; Kumar et al. 2017a; Jain et al. 2011; Kametani et al. 2007; Botes et al. 2008; Joshi 1997; Tudose et al. 2009). The Aloe plant species possessed strong antimalarial activity (Oumer et al. 2014; Deressa et al. 2010; Bbosa et al. 2013; van Zyl and Viljoen 2002; Ndhlala et al. 2009). This plant has potential to cure sunburns, burns and minor cuts, and even skin cancer. Its external use in cosmetics primarily includes as skin healer and prevents injury of epithelial tissues, cures acne, and gives a youthful glow to skin; it also acts as an extremely powerful laxative (West and Zhu 2003) and has potential chronic toxicity (Matsuda et al. 2008).

      Several phytochemicals aloesin, 2′-O-feruloylaloesin, aloeresin A, barbaloin, isobarbaloin, aloenin, aloe emodin, 8-C-glucosyl-7-O-methyl-(S)-aloesol, isoaloeresin D, and aloeresin E (which are phenolic constituents of aloe) were isolated from Aloe barbadensis, Aloe arborescens, A. vera var. chinensis, Aloe marlothii, and Aloe striata (Okamura et al. 1996a,b). The grasslike and scandent aloes accumulate flavonoids in co-occurrence with the anthrone isomers aloin A and aloin B from Aloe boylei (Choi and Chung 2003; Surjushe et al. 2008; Lindsey et al. 2002). Phytochemical investigation of the ethyl acetate extract of the roots of Aloe megalacantha and Aloe turkanensis showed the presence of several compounds, viz 1,8-dimethoxynepodinol, aloesaponarin III, 10-O-methylchrysalodin, methyl-26-O-feruloyl-oxyhexacosanate and chrysalodin, 10-(chrysophanol-7′-yl)-10-hydroxychrysophanol-9-anthrone, 7-hydroxy-4-methoxy-5-methylcoumarin, chrysophanol, helminthosporin, aloe emodin, aloesaponarin II, aloesaponarin I, aloesaponol

Скачать книгу