Secondary Metabolites of Medicinal Plants. Bharat Singh

Чтение книги онлайн.

Читать онлайн книгу Secondary Metabolites of Medicinal Plants - Bharat Singh страница 93

Автор:
Жанр:
Серия:
Издательство:
Secondary Metabolites of Medicinal Plants - Bharat Singh

Скачать книгу

Renaissance Kuala Lumpur.

      68 Saito, S.T., da Silva Trentin, D., Macedo, A.J. et al. (2012). Bioguided fractionation shows Cassia alata extract to inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa growth and biofilm formation. Evidence Based Complement. Altern. Med. 2012: 867103.

      69 Shah, R.R., Subbaiah, K.V., and Mehta, A.R. (1976). Hormonal effect on polyphenol accumulation in Cassia tissues cultured in vitro. Can. J. Bot. 54: 1240–1245.

      70 Shankar, D. and Ved, D.K. (2003). Balanced perspective for management of Indian medicinal plants. Indian For. 129: 275–288.

      71 Sharanaiah, U., Marachel, S., and Aberomand, M. (2013). Antioxidant and antidiabetic activities of medicinal plants: a short review. Int. J. Res. Phytochem. Parmacol. 3: 40–53.

      72 Shibata, S., Morishita, E., Kaheda, M. et al. (1969). Chemical studies on the oriental plant drugs. XX. The constituents of Cassia tora L. Chem. Pharm. Bull. 17: 454–457.

      73 Spoke, P.P. and Abdulahi, N.I. (1978). Occurrences of anthraquinones in the leaves of Cassia species. Niger. J. Pharm. 9: 160–165.

      74 Srivastava, A., Pandey, R., and Verma, R.K. (2006). Liquid chromatographic determination of Sennosides in Cassia angustifolia leaves. J. AOAC Int. 89: 937–941.

      75 Sundaramoorthy, S., Gunasekaran, S., Arunachalam, S., and Sathiavelu, M. (2016). A phytopharmacological review on Cassia species. J. Pharm. Sci. Res. 8: 260–264.

      76 Trinh, P.T.N., Luan, N.Q., Tri, M.D. et al. (2017). New naphthalene derivative from the leaves of Cassia grandis L. Nat. Prod. Res. 31: 1733–1738.

      77 Vaishnav, M.M. and Gupta, K.R. (1996). Rhamnetin 3-O-gentiobioside from Cassia fistula roots. Fitoterapia LXVII: 78–79.

      78 Vats, S. and Kamal, R. (2014a). Cassia occidentalis L. (a new source of rotenoids): its in vitro regulation by feeding precursors and larvicidal efficacy. Plant Cell Tissue Organ Cult. 116: 403–409.

      79 Vats, S. and Kamal, R. (2014b). Flavonoids and antioxidant activity of different plant parts and callus culture of Cassia occidentalis L. Curr. Bioact. Compd. 10: 201–206.

      80 Vats, S. and Kamal, R. (2014c). Identification of flavonoids and antioxidant potential of Cassia tora L. Am. J. Drug Discovery Dev. 4: 50–57.

      81 Viegas Júnior, C., Bolzani, V.S., Furlan, M. et al. (2004). Further bioactive piperidine alkaloids from the flowers and green fruits of Cassia spectabilis. J. Nat. Prod. 67: 908–910.

      82 Viegas Júnior, C., Pivatto, M., de Rezende, A. et al. (2013). (−)-7-Hydroxycassine: a new 2,6-dialkylpiperidin-3-ol alkaloid and other constituents isolated from flowers and fruits of Senna spectabilis (Fabaceae). J. Braz. Chem. Soc. 24: 230–235.

      83 Vijayalakshmi, A. and Madhira, G. (2014). Anti-psoriatic activity of flavonoids from Cassia tora leaves using the rat ultraviolet B ray photodermatitis model. Rev. Bras. Farmacogn. 24: 322–329.

      84 Warrier, P.K. and Nambiar, V.P.K. (1993). Indian Medicinal Plants: A Compendium of 500 Species, vol. 2. Hyderabad, Telangana: Orient BlackSwan/Universities Press.

      85 Yadav, J.P., Arya, V., Yadav, S. et al. (2010). Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia 81: 223–230.

      86 Yagi, S.M., El Tigani, S., and Adam, S.E.I. (1998). Toxicity of Senna obtusifolia fresh and fermented leaves (kawal), Senna alata leaves and some products from Senna alata on rats. Phytother. Res. 12: 324–330.

      87 Yang, Y., Lim, M., and Lee, H. (2003). Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. J. Agric. Food. Chem. 51: 7629–7631.

      88 Yen, G.C., Chen, H.W., and Duh, P.D. (1998). Extraction and identification of an antioxidative component from Jue Ming Zi (Cassia tora L.). J. Agric. Food. Chem. 46: 820–824.

      89 Zhao, W., Zeng, X., Zhang, T. et al. (2013). Flavonoids from the bark and stems of Cassia fistula and their anti-tobacco mosaic virus activities. Phytochem. Lett. 6: 179–182.

      90 Zhao, Y., Zhao, K., Jiang, K. et al. (2016). A Review of flavonoids from Cassia species and their biological activity. Curr. Pharm. Biotechnol. 17: 1134–1146.

      91 Zribi, I., Sbai, H., Ghezal, N. et al. (2017). Phytotoxic activity and chemical composition of Cassia absus seeds and aerial parts. Nat. Prod. Res. 31: 2918–2922.

      2.23.1 Ethnopharmacological Properties and Phytochemistry

      Catharanthus roseus (L.) G. Don. (Fam. – Apocynaceae), an important medicinal plant, contains alkaloids, used in the treatment of diabetes, blood pressure, asthma, constipation, cancer, and menstrual problems (Sain and Sharma 2013). This plant species is used in traditional medicine in several countries (Don 1999) such as South Africa, China, India, Mexico (Patel et al. 2012), and Malaysia (Ong et al. 2011), as a remedy for diabetic patients (Li et al. 2004). Alkaloids of C. roseus possessed hypotensive, sedative, tranquilizing, and anticancer properties. According to available literature on traditional system of medicine, the whole plant is used for relief from muscle pain and treatment of depression and wasp stings. It is also recommended for the treatment of nose bleeding, bleeding of gums, ulcers of the mouth, and sore throats (Kirtikar and Basu 1975), as well as hypertension, cystitis, gastritis, enteritis, and diarrhea and recovery of memory (Siddiqui et al. 2010; Mallik et al. 2013). Several vinca alkaloids including vinblastine, vincristine, vinorelbine, and vinflunine were isolated from Vinca rosea, and these isolated alkaloids have demonstrated antitumor activity (Schutz et al. 2011; Almagro et al. 2015).

      By using an aqueous acidic medium, 3′,4′-anhydrovinblastine and catharoseumine were isolated from freshly picked leaves of C. roseus (Goodbody et al. 1988). The isolated catharoseumine has cytotoxicity against HL-60 cell line (Wang et al. 2012). Similarly from the aerial parts of C. roseus, vindoline, vindolidine, vindolicine, roseadine, leurosine-N′b-oxide, leurocolombine, catharanthamine, pleuroside, dimethylvinblastin, 5′-oxoleurosine, leurosidine N′b-oxide, vinorelbine, vinzolidine, vineamine, raubasin, 16-epi-19-S-vindolinine, and vindolinine were isolated, and their identities confirmed by the analysis of spectral data (Sinha and Jain 1994; Atta-ur et al. 1983; Tiong et al. 2013; Aruna et al. 2015).

      The secondary metabolites are primarily used by medical sciences to control various diseases and ailments. The vincristine, vinblastine, and vindiscline have been identified from C. roseus. The isolated compounds possess antimetastatic activity by inhibiting microtubule formation (Negi 2011).

Скачать книгу