DNA- and RNA-Based Computing Systems. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу DNA- and RNA-Based Computing Systems - Группа авторов страница 25

DNA- and RNA-Based Computing Systems - Группа авторов

Скачать книгу

4: 413–478.

      12 12 Shea, A., Fett, B., Riedel, M.D., and Parhi, K. (2010). Writing and compiling code into biochemistry. In: Biocomputing 2010, 456–464. World Scientific.

      13 13 Murphy, N., Petersen, R., Phillips, A. et al. (2018). J. R. Soc. Interface 15: 20180283.

      14 14 Thubagere, A.J., Thachuk, C., Berleant, J. et al. (2017). Nat. Commun. 8: 14373.

      15 15 Beaver, D. (1995). DNA Based Comput. 27: 29–36.

      16 16 Qian, L., Soloveichik, D., and Winfree, E. (2011). Efficient Turing‐universal computation with DNA polymers. In: DNA Computing and Molecular Programming (Lecture Notes in Computer Science), vol. 6518, 123–140.

      17 17 Salehi, S.A., Parhi, K.K., and Riedel, M.D. (2017). Chemical reaction networks for computing polynomials. ACS Synth. Biol. 6 (1): 76–83, ACS Publications.

      18 18 Chen, H.L., Doty, D., and Soloveichik, D. (2014). ACM Conference on Innovations in Theoretical Computer Science, 313–326.

      19 19 Horn, F. and Jackson, R. (1972). Arch. Ration. Mech. Anal. 47: 81–116.

      20 20 Cheng, B. and Riedel, M. (2009). Stochastic transient analysis of biochemical systems and its application to the design of biochemical logic gates. In: Biocomputing 2009, 4–14.

      21 21 Jiang, H., Riedel, M.D., and Parhi, K.K. (2013). Digital logic with molecular reactions. In: 2013 IEEE/ACM International Conference on Computer‐Aided Design (ICCAD), 721–727. IEEE.

      22 22 Ge, L., Zhong, Z., Wen, D. et al. (2016). IEEE Trans. Mol. Biol. Multi‐Scale Commun. 3: 33–47.

      23 23 Jiang, H., Kharam, A.P., Riedel, M.D., and Parhi, K.K. (2010). A synthesis flow for digital signal processing with biomolecular reactions. In: 2010 IEEE/ACM International Conference on Computer‐Aided Design (ICCAD), 417–424. IEEE.

      24 24 Jiang, H., Riedel, M.D., and Parhi, K.K. (2011). Synchronous sequential computation with molecular reactions. In: Proceedings of the 48th Design Automation Conference, 836–841.

      25 25 Jiang, H., Salehi, S.A., Riedel, M., and Parhi, K.K. (2013). ACS Synth. Biol. 2: 245–254.

      26 26 Kharam, A., Jiang, H., Riedel, M., and Parhi, K.K. (2011). Binary counting with chemical reactions. In: Biocomputing 2011, 302–313.

      27 27 Li, M., Ge, L., You, X., and Zhang, C. (2018). Basic arithmetics based on analog signal with molecular reactions. In: 2018 IEEE International Conference on Communications (ICC), 1–6. IEEE.

      28 28 Fett, B. and Riedel, M.D. (2008). Module locking in biochemical synthesis. In: 2008 IEEE/ACM International Conference on Computer‐Aided Design, 758–764. IEEE.

      29 29 Salehi, S.A., Liu, X., Riedel, M.D., and Parhi, K.K. (2018). Sci. Rep. 8: 8312.

      30 30 Liu, X. and Parhi, K.K. (2020). Molecular and DNA artificial neural networks via fractional coding. IEEE Trans. Biomed. Circuits Syst. 14 (3): 490–503.

      31 31 Liu, X. and Parhi, K.K. (2019). Training DNA perceptrons via fractional coding. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE.

      32 32 Liu, X. and Parhi, K.K. (2019). Computing radial basis function support vector machine using DNA via fractional coding. In: Proceedings of the 56th Annual Design Automation Conference 2019, 1–6.

      33 33 Salehi, S.A., Jiang, H., Riedel, M.D., and Parhi, K.K. (2015). IEEE Trans. Mol. Biol. Multi‐Scale Commun. 1: 249–264.

      34 34 Salehi, S.A., Riedel, M.D., and Parhi, K.K. (2014). Asynchronous discrete‐time signal processing with molecular reactions. In: 2014 48th Asilomar conference on signals, systems and computers, 1767–1772. IEEE.

      35 35 Qian, L. and Winfree, E. (2011). J. R. Soc. Interface 8: 1281–1297.

      36 36 Qian, L. and Winfree, E. (2011). Science 332: 1196–1201.

      37 37 Qian, L., Winfree, E., and Bruck, J. (2011). Nature 475: 368–372.

      38 38 Cherry, K.M. and Qian, L. (2018). Nature 559: 370–376.

      39 39 Maass, W. (2000). Neural Comput. 12: 2519–2535.

      40 40 Li, D. (2012). IEEE Signal Process Mag. 29: 141–142.

      41 41 Wilhelm, D., Bruck, J., and Qian, L. (2018). Proc. Natl. Acad. Sci. U.S.A. 115: 903–908.

       Dmitry M. Kolpashchikov1,2* and Aresenij J. Kalnin3

       1University of Central Florida, Chemistry Department, 4111 Libra Drive, Orlando, FL, 32816‐2366, USA

       2University of Central Florida, Burnett School of Biomedical Sciences, 6900 Lake Nona Blvd, Orlando, FL, 32816, USA

       3SCAMT Institute, Laboratory of Molecular Robotics and Biosensor Materials, 9 Lomonosova Street, St. Petersburg, 191002, Russian Federation

      This chapter describes approaches for connecting DNA logic gates in circuits with the emphasis on (i) deoxyribozyme (Dz) logic gates, (ii) strand displacement (seesaw) logic gates, and (iii) DNA logic gates connected via four‐way junctions (4WJs). Most common problems on the way toward creating long chains of communicating DNA logic gates are discussed.

Скачать книгу