DNA- and RNA-Based Computing Systems. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу DNA- and RNA-Based Computing Systems - Группа авторов страница 26

DNA- and RNA-Based Computing Systems - Группа авторов

Скачать книгу

logic gate designed by Stojanovic et al. [14] took advantage of deoxyribozymes – nonnaturally occurring DNA sequences that catalyze chemical reactions [33,34]. One of most commonly used deoxyribozyme classes in DNA‐based molecular computation is a class of RNA‐cleaving deoxyribozymes (RCDZ). The design principles for RCDZ‐based two‐input AND gate (2iAND) are shown in Figure 4.1. A DNA strand containing an RCDZ catalytic core and two substrate‐binding arms is rendered inactive by the two inactivating stems. Binding the two oligonucleotide inputs I1 and I2 to the input‐recognition loop modules unwind the inactivating stems, thus enabling binding of a fluorogenic F substrate (F sub). The cleavage of F sub results in fluorescent increase due to the separation of the fluorophore from quencher. Importantly, when added separately, I1 and I2 are unable to restore the catalytic activity of RCDZ, which ensures the appropriate logic behaviours of the 2iAND construct. NOT, OR, ANDNOT, and even three‐input ANDNOTANDNOT gates can be designed by following similar principles of RCDZ core activation and inactivation [35,36]. Splitting the RCDZ core in two halves enables designing the gates that can process up to five inputs (e.g. 5iAND gate shown in Figure 4.1b) [37]. RCDZ logic gates have been used to build complex systems including automatons that can play Tic‐Tac‐Toe game with human, which utilize over hundreds of logic gates [38,39] (reviewed in [11]).

Examples of deoxyribozyme-based logic gates. (a) One of the first DNA logic gates: deoxyribozyme (Dz)-based two-input AND gate (2iAND). (b) Dz-based five-input AND gate. Dz catalytic core regains activity only when all five oligonucleotide inputs (I1–I5) are present. I1, I2, I3, and I4 open the inactivating stems, while I5 bridges strands Dza and Dzb together to form a catalytic core.

      Source: Based on Stojanovic et al. [14].

Image described by caption.

      Bone et al. used split cascades based on the most catalytically active 10–23 Dz that enable realizing inactivated RCDZ [43]. This approach can reduce the amount of input required for cascade activation from 20–1000 nM to 20–100 pM [43,37,44].

Image described by caption.

      The advantages of this system for DNA logic gate design are the following:

      1 (i) Design simplicity.

      2 (ii) The double‐stranded constructs with only short single‐stranded overhangs ( toeholds) reduce the nonspecific associations between oligonucleotides, which enables usage of many different

Скачать книгу