Guía práctica para la evaluación de impacto. Raquel Bernal

Чтение книги онлайн.

Читать онлайн книгу Guía práctica para la evaluación de impacto - Raquel Bernal страница 11

Guía práctica para la evaluación de impacto - Raquel Bernal

Скачать книгу

3

       SESGO DE SELECCIÓN

      Como se detalló en el capítulo anterior, la evaluación de impacto consiste en la estimación de:

      donde E[Yi(1)|Di = 1] es el valor esperado de la variable de resultado entre los participantes en el programa en presencia del programa y E[Yi(0)|Di = 1], o resultado contrafactual, es el valor esperado de la variable de resultado entre los participantes en ausencia del programa. En otras palabras, evaluar la diferencia entre la variable de resultado entre el grupo de tratados si existe el programa y la variable de resultado entre el grupo de tratados si no se hubiera implementado el programa. Claramente no es posible observar ambos resultados al mismo tiempo. Sin embargo, sí se puede observar la variable de resultado entre un grupo de individuos elegibles que no participan en el programa (o grupo de control), E[Yi(0)|Di = 0].

      El principal reto de la evaluación de impacto es determinar las condiciones bajo las cuales E[Yi(0)|Di = 0] se puede utilizar como una aproximación válida de E[Yi(0)|Di = 1] y, por tanto, utilizarse en la ecuación (3.1) para obtener el efecto del programa ATT.

      Evidentemente E[Yi(0)|Di = 0] se podría utilizar como una aproximación adecuada del contrafactual si

      Es decir, si la variable de resultado en ausencia del programa es idéntica para el grupo de individuos tratados (D = 1) que para el grupo de individuos de control (D = 0).

      El supuesto (3.2) se viola toda vez que la participación en el programa es una elección del individuo elegible. La razón es que los participantes y los no participantes generalmente son diferentes, aun en ausencia del programa, y por tal motivo es precisamente que se observa que unos escogen participar y otros no, aun si todos son elegibles para recibir el tratamiento. Es decir, existen características (observadas y/o no observadas) que causan que unos individuos participen y otros no. Probablemente, las diferencias en estas características entre individuos participantes e individuos no participantes también originen diferencias en la variable de resultado entre un grupo y el otro. Por ende, es muy probable que la variable de resultado del grupo de tratamiento y la variable de resultado del grupo de control sean diferentes, aun si el programa no existiera. Este hecho se conoce como sesgo de selección.

      Recuerde que el ATT se puede escribir como:

      En la ecuación (3.3) es claro que si los individuos del grupo de tratamiento y el grupo de control son diferentes, aun en ausencia del tratamiento (la segunda parte al lado derecho de la ecuación), entonces la diferencia entre la media del grupo de tratamiento y la media del grupo de control (el lado izquierdo de la ecuación) será igual al ATT más la diferencia preexistente entre los dos grupos, término que se denomina sesgo de selección. Es decir, la comparación de medias entre el grupo de tratamiento y el grupo de control será una combinación del efecto directo del tratamiento, ATT , y las diferencias preexistentes entre los dos grupos, E[Yi(0)|Di = 1] = E[Yi(0)|Di = 0], y sin información adicional el investigador no puede descifrar qué parte se debe a qué.

      En suma, los individuos que se autoseleccionan en el grupo de tratamiento son sistemáticamente diferentes (en formas que observamos y formas que no observamos) de los individuos que se autoseleccionan en el grupo de control, y precisamente por eso participan en el programa. Esas diferencias sistemáticas pueden estar relacionadas, a su vez, con la variable de resultado, objeto de la evaluación de impacto.

      En el capítulo anterior se explicó que si se cumple el supuesto (3.2), entonces el efecto del programa sobre la variable de resultado, Yi, es la pendiente estimada por mínimos cuadrados ordinarios de la siguiente regresión lineal:

      donde Di es el indicador del estatus de tratamiento.

       Ejemplo 3.1:

      Suponga que el programa Canasta se ofrece y los individuos elegibles deben decidir si quieren participar o no. Además, participar tiene un costo en tiempo y trámites, debido a que la mamá del niño elegible debe acercarse a una oficina de la institución encargada de administrar el programa, diligenciar un formulario de inscripción y llevar al niño potencialmente participante a un control médico en el que se registran sus medidas antropométricas (estatura y peso). Aunque todas las mamás de niños entre los 0 y 6 años de edad que pertenecen a Sisbén 1 y 2 son elegibles para el programa, es muy probable que un conjunto de madres considere que el costo de inscribirse para participar en el programa es muy alto porque las filas son muy largas, el examen médico es muy demorado o el hospital en el que se lleva a cabo es muy lejos, por lo cual preferirán no recibir el mercado. Es decir, se podría pensar que las mamás que sí deciden participar son aquellas más proactivas y motivadas y que, a pesar del costo de participación, se preocupan por sus hijos y su bienestar lo suficiente (o tienen el tiempo disponible) como para ir hasta la oficina, hacer la fila, sacar la cita en el hospital, ir al hospital para asistir a la cita médica, volver a la oficina administradora a reclamar el mercado, etcétera.

      Note entonces que las madres participantes y las madres no participantes son diferentes en cuanto a su perfil de madre, la disponibilidad de tiempo, su disposición a ocuparse de los hijos, etc. Estas características, algunas de las cuales no son observadas por el evaluador porque no existen mediciones o porque no fueron registradas en los datos (como qué tan dedicada es la mamá a sus hijos), pueden también afectar el estado nutricional de los niños participantes y no participantes. Por ejemplo, las mamás más proactivas y motivadas pueden ser también aquellas que se preocupan más por la nutrición de los niños y, por tanto, les

Скачать книгу