Guía práctica para la evaluación de impacto. Raquel Bernal

Чтение книги онлайн.

Читать онлайн книгу Guía práctica para la evaluación de impacto - Raquel Bernal страница 12

Guía práctica para la evaluación de impacto - Raquel Bernal

Скачать книгу

en ui porque explica la medida antropométrica (o variable de resultado), Yi .

      Dado que existen características observadas y no observadas de los individuos, contenidas en ui, que explican tanto la decisión de participar en el programa como la variable de resultado, entonces

      Intuitivamente, si hay variables que explican tanto la participación en el programa como la variable de resultado, la comparación de medias puede estar atribuyendo al programa un efecto que en realidad se debe a las diferencias preexistentes entre el grupo de tratamiento y el grupo de control. En nuestro ejemplo del programa Canasta, si las madres participantes son más dedicadas y están más motivadas que las madres no participantes, entonces podemos estar atribuyendo al programa un efecto positivo sobre el estado nutricional de los niños, cuando en realidad la diferencia en las medidas antropométricas a favor de los niños tratados se debe a que tienen madres más pendientes de su dieta que los niños de control, y no al programa en sí. Si la característica del individuo, Xi, que explica tanto la participación en el programa como la variable de resultado, es observable y está contenida en la base de datos disponible, entonces este problema se soluciona simplemente incluyéndola en la regresión (3.4) como una variable explicativa adicional:

      donde Xi es una característica observable del individuo, que explica tanto la participación en el programa como la variable de resultado Yi.

      Por ejemplo, si los individuos más pobres son aquellos que deciden participar en el programa Canasta, mientras que los individuos más ricos eligen no hacerlo, entonces Xi sería el índice de riqueza del hogar. Si esta es la única diferencia entre los participantes y los no participantes, entonces el estimador de β1 en la ecuación (3.5) por MCO es un estimador consistente e insesgado del efecto del programa.

      Si las diferencias entre los participantes y no participantes son todas observables (y la base de datos contiene información acerca de todas ellas), entonces la regresión (3.5) se puede extender para incluir todas esas características. Si todas las diferencias entre el grupo de tratamiento y el grupo de control se incluyen en la regresión, entonces los factores restantes contenidos en ui son efectivamente independientes de la decisión de participar, Di , y, por ende, el estimador de β1 por MCO es un estimador insesgado y consistente del efecto del programa.

      La dirección precisa del sesgo (llamado sesgo de selección, por las razones que se han expuesto anteriormente) depende de la relación existente entre la participación en el programa y la variable que diferencia a los participantes de los no participantes (llamémosla W), y de la dirección del efecto de la variable excluida W sobre la variable de resultado Y.

      Teniendo en mente el siguiente modelo:

      donde W es una característica no observable (o no contenida en la encuesta), la dirección del sesgo de por MCO sobre la regresión (3.5) se puede resumir de la siguiente manera:

      donde Corr (Di, Wi) es la correlación entre Di y Wi.

      Por ejemplo, tomemos el caso de la primera celda (superior-izquierda). Si a mayor dedicación de la madre (variable W no observada), mayor es la probabilidad de participar en el programa Canasta, entonces Corr (Di, Wi) > 0. Si, además, la dedicación de la madre aumenta la estatura según la edad del niño (variable de resultado Yi) porque la dieta que ofrece la madre más dedicada es más balanceada, entonces β2 > 0. En este caso, el estimador de MCO de en la regresión (3.4) estaría sesgado hacia arriba E() > β1, es decir, el efecto estimado del programa sobre el peso según la estatura es mayor que el efecto verdadero del programa. Esto se presenta porque, al no poder incluir W en la regresión, le estamos atribuyendo al programa (a Di) parte del efecto positivo que tiene W sobre Y. Es decir, se le atribuye al programa parte del efecto positivo de la mayor motivación de las madres participantes sobre el estado nutricional de sus hijos. En otras palabras, Di absorbe tanto su efecto propio (sobre Y) como el efecto que tiene W directamente sobre Y, dando lugar a un efecto más grande de lo que en realidad es.

      La gran mayoría de programas que se evalúan en la actualidad están caracterizados por el hecho de que los individuos deben elegir si participan o no. Esto implica que las diferencias que surgen entre los participantes y no participantes son, en buena parte, no observables. Así, el gran reto de la evaluación de impacto es encontrar metodologías que permitan obtener un estimador consistente e insesgado de β1 aun en presencia del sesgo de selección. Estas diversas metodologías se discuten en los capítulos a continuación.

      Blundell, R. y M. Costa Dias, 2009, “Alternative Approaches to Evaluation in Empirical Microeconomics,” Journal of Human Resources, University of Wisconsin Press, vol. 44(3), 565-640.

      Heckman, J., R. LaLonde y J. Smith, 1999, “The Economics and Econometrics of Active Labor Market Programs,” en O. Ashenfelter y D. Card, capítulo 31, Handbook of Labor Economics, Vol. IV, 1865-2073.

      Smith, J., 2000, “A Critical survey of Empirical Methods for Evaluating Active Labor Market Policies”, Schweizerische Zeitschrift fr Volkswirthschaft und Statistik, 136(6), 1-22.

Скачать книгу