Honey Bee Medicine for the Veterinary Practitioner. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Honey Bee Medicine for the Veterinary Practitioner - Группа авторов страница 24

Honey Bee Medicine for the Veterinary Practitioner - Группа авторов

Скачать книгу

ultraviolet. Hives painted red appear black to bees, and is a poor choice for hive color given that it is the color of a key predator – the black bear –therefore, hives painted in shades of yellows, greens, blues, or pastel colors are more easily distinguished by honey bees compared to ones painted red or purple.

      Fifth, hives should provide the bees with a well‐insulated nesting cavity, so that less of a colony's energy is expended on heating and cooling, to achieve thermal homeostasis. The health of a honey bee colony depends on keeping its brood nest at ca. 35 °C from spring to fall, and to keeping the outer layer of the winter cluster above about 10 °C throughout winter.

      Finally, bee doctors should avoid treatment of pathogens without a clear diagnosis. A key component of the honey bee environment is the bee's microbiome, which is hidden from view to anyone without a microscope and culture plate. The social behaviors that produce the characteristic flora of the honey bee's gut serve important roles in prevention of disease; the indiscriminate use of antibiotic therapy is known to promote resistance as well as alter the symbiotic gut microbes that underlie the health of honey bee colonies.

      Charles Darwin marveled at the honey bee organism and spent a great deal of time studying the organization and structure of their colonies, including the wonderous design of their hexagonal comb. Darwin could not have known the full extent of the threats that the world's honey bees would face in the twenty‐first century – from climate change to mite‐vectored pathogens. But perhaps he had the bees in mind when he wrote: It is not the strongest of species that survives, nor the most intelligent, but the one most responsive to change.

      1 Amiri, E., Strand, M.K., Ruepell, O., and Tarpy, D.R. (2017). Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health. Insects 8 (48): 18.

      2 Becher, M.A., Osborne, J.L., Thorbek, P. et al. (2013). Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. Journal of Applied Ecology 50: 868–880.

      3 Borba, R.S., Klyczek, K.K., Mogen, K.L., and Spivak, M. (2015). Seasonal benefits of a natural propolis envelope to honey bee immunity and colony health. Journal of Experimental Biology 218: 3689–3699. https://doi.org/10.1242/jeb.127324.

      4 Brosi, B.J., Delaplane, K.S., Boots, M., and de Roode, J.C. (2017). Ecological and evolutionary approaches to managing honey bee disease. Nature Ecology and Evolution 1 (9): 1250–1262.

      5 Chapman, N.C., Lim, J., and Oldroyd, B.P. (2008). Population genetics of commercial and feral honey bees in Western Australia. Journal of Economic Entomology 101 (2): 272–277.

      6 Coombs, A.B., Bowman, J., and Garroway, C.J. (2010). Thermal properties of tree cavities during winter in a northern hardwood forest. Journal of Wildlife Management 74 (8): 1875–1881.

      7 Cornman, R.S., Tarpy, D.R., Chen, Y. et al. (2012). Pathogen webs in collapsing honey bee colonies. PLoS One 7 (8): 1–15.

      8 Darwin, C. (1868). The Variation of Animals and Plants Under Domestication, vol. 2. London, UK: John Murray.

      9 De Jong, D. and Soares, A.E.E. (1997). An isolated population of Italian bees that has survived Varroa jacobsoni infestation without treatment for over 12 years. American Bee Journal 137: 742–745.

      10 Delaplane, K. (2017). What epidemiology can teach us about honey bee health management. American Bee Journal 157 (4): 419–421.

      11 Delaplane, K.S., Pietravalle, S., Brown, M.A., and Budge, G.E. (2015). Honey bee colonies headed by hyperpolyandrous queens have improved brood rearing efficiency and lower infestation rates of parasitic Varroa mites. PLoS One 10 (12): e0142985. https://doi.org/10.1371/journal.pone.0142985.

      12  Di Prisco, G., Annoscia, D., Margiotta, M. et al. (2016). A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences 113 (12): 3202–3208.

      13 Ellis, J.D., Evans, J.D., and Pettis, J. (2010). Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. Journal of Apicultural Research 49 (1): 134–136.

      14 Engel, P., Martinson, V.G., and Moran, N.A. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences 109 (27): 11002–11007.

      15 Evans, J.D., Aronstein, K., Chen, Y.P. et al. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology 15 (5): 645–656.

      16 Fleming, J.C., Schmehl, D.R., and Ellis, J.D. (2015). Characterizing the impact of commercial pollen substitute diets on the level of Nosema spp. in honey bees (Apis mellifera L.). PLoS One 10 (7): e0132014. https://doi.org/10.1371/journal.pone.0132014.

      17 Fries, I. and Bommarco, R. (2007). Possible host‐parasite adaptations in honey bees infested by Varroa destructor mites. Apidologie 38 (6): 525–533.

      18 Fries, I. and Camazine, S. (2001). Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 32: 199–214.

      19 Fries, I., Imdorf, A., and Rosenkranz, P. (2006). Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate. Apidologie 37 (5): 564–570. https://doi.org/10.1051/apido:2006031.

      20 de Garis Davies N. (1930). Sculptors at Work, Tomb of Rekhmire (TT 100). Egypt, New Kingdom, Dynasty 18, Reign of Thutmose III–early Amenhotep II, ca. 1479–1425 B.C., Tempera on Paper. The Metropolitan Museum of Art, New York, USA.

      21 Hodges, C.R., Delaplane, K.S., and Brosi, B.J. (2018). Textured hive interiors increase honey bee (Hymenoptera: Apidae) propolis‐hoarding behavior. Journal of Economic Entomology 20 (10): 1–5. https://doi.org/10.1093/jee/toy363.

      22 Honey Bee Gene Sequencing Consortium (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443: 931–949.

      23 L'Arrivée, J.C.M. (1965). Sources of Nosema infection. American Bee Journal 105: 246–248.

      24 Kermack, W. and McKendrick, A. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A 115: 700–721.

      25 Kuropatnicki, A.K., Szliszka, E., and Krol, W. (2013). Historical aspects of propolis research in modern times. Evidence‐based Complementary and Alternative Medicine 2013: 1–11.

      26 Le Conte, Y., De Vaublanc, G., Crauser, D. et al. (2007). Honey bee colonies that have survived Varroa destructor. Apidologie 38 (6): 566–572.

      27 Lipstich, M., Siller, S., and Nowak, M.A. (1996). The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50 (5): 1729–1741.

      28 Locke, B. (2016). Natural Varroa mite‐surviving Apis mellifera honeybee populations. Apidologie 47 (3): 467–482. https://doi.org/10.1007/s13592‐015‐0412‐8.

      29 Locke, B. and Fries, I. (2011). Characteristics

Скачать книгу