Die ultimative Synology NAS Bibel. Wolfram Gieseke

Чтение книги онлайн.

Читать онлайн книгу Die ultimative Synology NAS Bibel - Wolfram Gieseke страница 9

Автор:
Серия:
Издательство:
Die ultimative Synology NAS Bibel - Wolfram Gieseke

Скачать книгу

      RAID 0: schneller und riskanter

      Bei RAID 0 werden die Daten abwechselnd auf alle vorhandenen Festplatten geschrieben. Das führt vor allem beim Lesen der Daten zu einer Steigerung der Geschwindigkeit zwischen 30 und 80 %, da die zeitaufwendigen Plattenzugriffe zeitlich von mehreren Festplatten durchgeführt werden. Die Speicherkapazität leidet darunter nicht, weil sich z. B. zwei 1-TByte-Festplatten zu einem logischen 2-TByte-Laufwerk addieren.

      Kritisch bei RAID 0 ist allerdings das erhöhte Risiko eines Datenverlusts durch einen Festplattenfehler. Denn fällt eine der beiden Festplatten aus, sind durch die Verzahnung auch die Daten auf der anderen verloren. Man sollte RAID 0 daher niemals ohne zusätzliches Backup der wichtigen Daten verwenden.

      RAID 0 empfiehlt sich deshalb nur, wenn es darauf ankommt, die Zugriffsgeschwindigkeit auf die im NAS gespeicherten Daten zu maximieren, und die Sicherheit dieser Daten irrelevant bzw. anderweitig abgesichert ist. In der Praxis wird der Geschwindigkeitsgewinn auch nur in bestimmten datenintensiven Anwendungsszenarien spürbar sein, wenn etwa wie bei der Videobearbeitung regelmäßig größere Datenmengen transferiert werden müssen.

      RAID 1: Sicherheit durch Redundanz

      Wem es vor allem um den Schutz seiner Daten vor Festplattendefekten geht, für den ist RAID 1 interessant. Dabei werden üblicherweise zwei Festplatten zu einem redundanten logischen Laufwerk zusammengeschaltet. Dabei werden alle Daten jeweils auf beiden Laufwerken abgelegt, sodass ein Laufwerk eine Kopie des anderen ist. Kommt es bei einem der beiden Laufwerke zu einem Defekt, finden sich die Daten also weiterhin auf dem anderen. Außerdem kann man das defekte Laufwerk jederzeit ausbauen und durch ein neues ersetzen. Das NAS sorgt dafür, dass die vorhandenen Daten wieder auf das neue Laufwerk gespiegelt werden. Nach kurzer Zeit hat man also wieder einen voll redundanten Datenspeicher.

      Der Preis für diese Sicherheit ist, dass dabei die Gesamtspeicherkapazität auf die Hälfte reduziert wird. Zwei 1-TByte-Platten ergeben also – anders als bei RAID 0 – nicht 2, sondern nur 1 TByte nutzbaren Gesamtspeicher.

      RAID 5: Geschwindigkeit und Redundanz

      RAID 5 kombiniert die Vorteile von RAID 0 und RAID 1 auf eine relativ kostengünstige Weise. Dabei werden immer mindestens drei Festplatten zusammengeschaltet und die Daten gleichmäßig auf diese verteilt, was in den meisten Situationen schnelle Zugriffe ermöglicht. Redundanz wird dadurch erreicht, dass ein Datenblock nicht auf alle physikalischen Platten verteilt wird, sondern auf einer Platte stattdessen Paritätsdaten dieses Datenblocks gespeichert werden. Sollte eine der Festplatten ausfallen, können die so verlorenen Teile von Datenblöcken anhand dieser Paritätsdaten von den anderen Festplatten rekonstruiert werden.

      Genau wie bei RAID 1 kann man also eine defekte Festplatte einfach ersetzen, und das NAS sorgt dafür, dass die Integrität der Daten dann automatisch wiederhergestellt wird. Auch hier ist der Preis, dass sich die Speicherkapazität der beteiligten Festplatten nicht addiert. Stattdessen berechnet sich die Gesamtkapazität nach folgender Formel:

      (Anzahl aller Festplatten – 1) × (Kapazität der kleinsten Festplatte)

      Konkret: Bei drei 1-TByte-Festplatten erhält man mit RAID 5 effektiv 2 TByte nutzbaren Speicherplatz. Das ist aber selbst in der kleinsten Variante mit drei Festplatten noch effektiver als RAID 1, wo ja grundsätzlich nur die Hälfte der physikalischen Kapazität bereitsteht. Je mehr Festplatten man in einem RAID-5-Verbund einsetzt, desto größer wird der nutzbare Speicher in Relation zum Gesamtspeicher: Von fünf 1-TByte-Platten etwa kann man 4 TByte effektiv nutzen.

      Plattenwechsel im Fall einer Störung

      Wenn es zu einem Defekt einer Festplatte kommt, informiert Sie das NAS darüber z. B. per LED-Blinken, E-Mail etc. In einem solchen Fall ersetzen Sie die defekte Festplatte. Es muss sich nicht um ein baugleiches Modell handeln, aber sie sollte dieselbe Kapazität wie die ausgebaute haben, keinesfalls weniger, notfalls geht aber mehr. Abhängig vom NAS-Modell muss dieses für den Wechsel ausgeschaltet werden, oder der Tausch kann sogar im laufenden Betrieb erfolgen (HotSwap). Sicherer ist es aber immer, das NAS vorher herunterzufahren. Beim Neustart bemerkt das System, dass eine neue Festplatte eingebaut wurde. Es beginnt dann automatisch, die Daten zu rekonstruieren (außer bei RAID 0). Je nach Speicherkapazität kann dieser Vorgang aber einige Stunden dauern. Die Leistungsfähigkeit des NAS ist solange eingeschränkt.

      RAID 6: noch mehr Sicherheit

      Ab vier Festplatten im Verbund kann man mit RAID 6 zusätzliche Sicherheit schaffen. Das Prinzip ist das gleiche wie bei RAID 5, allerdings werden die Paritätsinformationen für die Wiederherstellung jeweils auf zwei verschiedene Platten geschrieben. Dadurch bleiben die Daten selbst beim gleichzeitigen Ausfall zweier Festplatten erhalten. Das zielt vor allem auf den Wiederherstellungsprozess nach dem Austausch einer defekten Festplatte. Bei großen Datenträgern kann dieser einige Zeit dauern. Währenddessen sind die Daten sehr gefährdet, denn kommt es zu einem weiteren Defekt, bevor dieser Vorgang abgeschlossen ist, wären alle Daten verloren. Ein RAID 6 könnte auch einen solchen doppelten Ausfall verkraften.

      Der Preis dafür ist allerdings auch ein geringeres nutzbares Speichervolumen in Bezug zur Gesamtkapazität:

      (Anzahl aller Festplatten – 2) × (Kapazität der kleinsten Festplatte)

      Konkret: Bei vier 1-TByte-Festplatten erhält man mit RAID 6 effektiv 2 TByte nutz­baren Speicherplatz. Besser wird die Quote, je mehr Festplatten man einsetzt: Bei fünf ­1-TByte-Platten etwa kann man 3 TByte effektiv nutzen, bei sechs 1-TByte-Platten 4 TByte etc.

      RAID 10

      Ein RAID 10 ist ein RAID 0 (also das Verteilen der Datenblöcke auf mehrere Laufwerke), bei dem diese Laufwerke jeweils aus einem RAID 1 (also zwei gespiegelten Laufwerken) bestehen. Es kombiniert den schnellen Zugriff eines RAID 0 mit der Redundanz eines RAID 1. Das tun RAID 5 bzw. 6 zwar auch, aber es gibt einen entscheidenden Unterschied: Kommt es bei RAID 5 bzw. 6 zu einer Störung, muss das defekte Laufwerk ersetzt und müssen die fehlenden Daten aus den Informationen der anderen Laufwerke rekonstruiert werden. Das dauert einige Zeit, und solange stehen die Daten nicht bereit. Bei einem RAID 10 hingegen ist selbst im Falle eines Defekts immer mindestens eine Kopie der Daten verfügbar. Der Preis dafür ist allerdings recht hoch: Man benötigt mindestens vier Festplatten, es muss immer eine gerade Anzahl von Platten vorhanden sein, und die nutzbare Kapazität ist stets nur die Hälfte des gesamten Speichervolumens aller verbauten Festplatten:

      (Anzahl aller Festplatten / 2) × (Kapazität der kleinsten Festplatte)

      RAID F1

      Bei diesem RAID-Level handelt es sich um eine neuere Variante, die vor allem bei der Verwendung von SSDs anstelle klassischer Magnetfestplatten zum Einsatz kommt. Das Prinzip ähnelt dem von RAID 5, allerdings berücksichtigt er eine Besonderheit von SSDs. Klassische Festplatten haben mechanische Bauteile, die immer einer geringen Fertigungstoleranz unterliegen. Dadurch ist es sehr unwahrscheinlich, dass selbst zwei gleiche Modelle bei der sehr symmetrischen Belastung, wie sie bei RAID 5 auftritt, zur selben Zeit ausfallen. Bei den rein elektronischen Bauteilen von SSDs sieht das ganz anders aus. Bei der sehr symmetrischen Beanspruchung in einem RAID-5-Verbund ist die Wahrscheinlichkeit, dass zwei baugleiche SSDs zum selben Zeitpunkt oder zumindest in einem sehr engen Zeitraum ausfallen, wesentlich höher.

      RAID F1 begegnet dieser Besonderheit mit einem anderen Algorithmus beim Verteilen der Daten, der die Paritätsinformationen nicht genau symmetrisch verteilt,

Скачать книгу