Научный риск (введение в анализ). В. Б. Живетин

Чтение книги онлайн.

Читать онлайн книгу Научный риск (введение в анализ) - В. Б. Живетин страница 12

Научный риск (введение в анализ) - В. Б. Живетин Риски и безопасность человеческой деятельности

Скачать книгу

представляет собой относительную истину, т. е. включает в себя не только достоверные, но и недостоверные знания. Так, например, применимость данной логики к одному кругу объектов из области G еще не означает возможность применимости ее в более широкой области G1: G
G1. При этом сформулированные для доказательства понятия и определения, аксиомы приводят к противоречию при доказательствах существования объектов в другой области со сформулированными свойствами. Так, при исследовании динамических объектов (систем) возникает необходимость изучать их траектории, представляющие собой случайные процессы. В теории случайных процессов, как правило, свойства конкретных физических объектов не учитываются. Здесь рассматривается абстрактный объект, которому ставят в соответствие абстрактный случайный процесс, например марковский, для которого имеется большое количество глубоких результатов. Так, для марковских процессов можно построить уравнение Фоккера – Планка – Колмогорова, с помощью которого можно рассчитать чрезвычайно важное свойство случайного процесса – переходную плотность вероятностей. Для этих же процессов, выступающих в роли абстрактных объектов, строятся модели достижения границ и т. д. Такие модели, как правило, не отражают физический мир, такие процессы могут быть и не порождены реальностью, а самое важное – в том, что нас не интересует их первопричина: они сами, оторванные от физического мира, суть объект исследования, первопричина.

      В качестве примеров взаимного проникновения различных теорий, обогативших методы изучения абстрактных объектов, можно рассмотреть: использование теории случайных процессов для исследования объектов математической физики [20]; исследование вероятностных объектов с помощью теории потенциалов [43].

      В настоящее время существуют глубокие и хорошо разработанные связи между уравнениями математической физики и случайными процессами, суть которых была открыта в 20-х годах прошлого столетия в работах Н. Винера, Р. Куранта, К. Фридриха и Х. Леви. Все эти работы обусловили введение нового математического объекта – интеграла по траекториям случайного процесса, а также более общего объекта – континуального интеграла, который играет важную роль в современной математической физике. Эти объекты используются в квантовой механике (интеграл Фейнмана), в классической статистической физике и в ряде областей математики, что обусловило необходимость разработки эффективных средств их приближенного вычисления.

      Одним из таких методов является метод Монте-Карло, позволяющий моделировать марковские процессы и интегралы по траекториям более общего характера. Недостатком метода принято считать скорость убывания его погрешности, которая в случае конечности второго момента используемой оценки ведет себя как О(N–1/2), где N – число моделируемых траекторий. Учет априорной информации относительно решения задачи позволяет уменьшить константу при N–1/2, что позволит

Скачать книгу