Polysaccharides. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Polysaccharides - Группа авторов страница 70
46. Hickey, R.J., Modulevsky, D.J., Cuerrier, C.M., Pelling, A.E., Customizing the Shape and Microenvironment Biochemistry of Biocompatible Macroscopic Plant-Derived Cellulose Scaffolds. ACS Biomater. Sci. Eng., 4, 11, 3726–3736, 2018.
47. Lee, J., Jung, H., Park, N., Park, S.H., Ju, J.H., Induced Osteogenesis in Plants Decellularized Scaffolds. Sci. Rep., 9, 1, 20194, 2019.
48. Courtenay, J.C., Sharma, R.I., Scott, J.L., Recent advances in modified cellulose for tissue culture applications. Molecules, 23, 3, 654, 2018.
49. Hickey, R.J. and Pelling, A.E., Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol., 7, 45, 2019.
50. Märtson, M., Viljanto, J., Hurme, T., Laippala, P., Saukko, P., Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials, 20, 21, 1989–95, 1999.
51. Novotna, K., Havelka, P., Sopuch, T., Kolarova, K., Vosmanska, V., Lisa, V., Svorcik, V., Bacakova, L., Cellulose-based materials as scaffolds for tissue engineering. Cellulose, 20, 2263–227, 2013.
52. Haney, A.F. and Doty, E., Comparison of the peritoneal cells elicited by oxidized regenerated cellulose (Interceed) and expanded polytetrafluoroethylene (Gore-Tex Surgical Membrane) in a murine model. Am. J. Obstet. Gynecol., 166, 4, 1137–46, 1992.
53. Costa, A.F.S., Almeida, F.C.G., Vinhas, G.M., Sarubbo, L.A., Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol., 8, 2027, 2017.
54. Torgbo, S. and Sukyai, P., Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl. Mater. Today, 11, 34–49, 2018.
55. Gorgieva, S. and Trček, J., Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 9, 10, 1352, 2019.
56. Portela, R., Leal, C.R., Almeida, P.L., Sobral, R.G., Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol., 12, 4, 586–610, 2019.
57. Torres, F., Commeaux, S., Troncoso, O., Biocompatibility of Bacterial Cellulose Based Biomaterials. J. Funct. Biomater., 3, 4, 864–878, 2012.
58. Jia, Y., Zhu, W., Zheng, M., Huo, M., Zhong, C., Bacterial cellulose/hyaluronic acid composite hydrogels with improved viscoelastic properties and good thermodynamic stability. Plast. Rubber Compos., 47, 4, 165–175, 2018.
59. Nair, L.S. and Laurencin, C.T., Biodegradable polymers as biomaterials. Prog. Polym. Sci., 32, 8-9, 762–798, 2007.
60. Li, J., Wan, Y., Li, L., Liang, H., Wang, J., Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C, 29, 5, 1635–1642, 2009.
61. Luo, H., Xiong, G., Hu, D., Ren, K., Yao, F., Zhu, Y., Gao, C., Wan, Y., Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater. Chem. Phys., 143, 1, 373–379, 2013.
62. Yadav, V., Paniliatis, B.J., Shi, H., Lee, K., Cebe, P., Kaplan, D.L., Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl. Environ. Microbiol., 76, 18, 6257–65, 2010.
63. Afewerki, S., Sheikhi, A., Kannan, S., Ahadian, S., Khademhosseini, A., Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng. Transl. Med., 41, 1, 96–115, 2019.
64. Dong, Z., Yuan, Q., Huang, K., Xu, W., Liu, G., Gu, Z., Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv., 9, 17737–17744, 2019.
65. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 6, 2, 105–21, 2015.
66. Zhai, P., Peng, X., Li, B., Liu, Y., Sun, H., Li, X., The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol., 151, 1224–1239, 2019.
67. Menaa, F., Menaa, A., Menaa, B., Hyaluronic Acid and Derivatives for Tissue Engineering. J. Biotechnol. Biomater., S3, 001, 2011.
68. Rayahin, J.E., Buhrman, J.S., Zhang, Y., Koh, T.J., Gemeinhart, R.A., High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomater. Sci. Eng., 1, 7, 481–493, 2015.
69. Campo, G.M., Avenoso, A., Campo, S., D’Ascola, A., Nastasi, G., Calatroni, A., Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie, 92, 2, 204–15, 2010.
70. Chircov, C. and Grumezescu, A.M., Bejenaru, L.E., Hyaluronic acid-based scaffolds for tissue engineering. Rom. J. Morphol. Embryol., 59, 1, 71–76, 2018.
71. Zanchetta, P., Lagarde, N., Uguen, A., Marcorelles, P., Mixture of hyaluronic acid, chondroitin 6 sulphate and dermatan sulphate used to completely regenerate bone in rat critical size defect model. J. Cranio-Maxill. Surg., 40, 8, 783–7, 2012.
72. Özgenel, G.Y., Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery, 23, 6, 575–81, 2003.
73. Lin, C.M., Lin, J.W., Chen, Y.C., Shen, H.H., Wei, L., Yeh, Y.S., Chiang, Y.H., Shih, R., Chiu, P.L., Hung, K.S., Yang, L.Y., Chiu, W.T., Hyaluronic acid inhibits the glial scar formation after brain damage with tissue loss in rats. Surg. Neurol., 72 Suppl 2, S50-4, 2009.
74. Seidlits, S.K., Khaing, Z.Z., Petersen, R.R., Nickels, J.D., Vanscoy, J.E., Shear, J.B., Schmidt, C.E., The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials, 31, 14, 3930–3940, 2010.
75. Bajpai, S.K. and Sharma, S., Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym., 59, 2, 129–140, 2004.
76. Sarker, B., Singh, R., Silva, R., Roether, J.A., Kaschta, J., Detsch, R., Schubert, D.W., Cicha, I., Boccaccini, A.R., Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One, 9, 9, e107952, 2014.
77. Kong, H.J., Smith, M.K., Mooney, D.J., Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials, 24, 22, 4023–9, 2003.
78. Shachar, M., Tsur-Gang, O., Dvir, T., Leor, J., Cohen, S., The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater., 7, 1, 152–62, 2011.
79. Al-Shamkhani, A. and Duncan, R., Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J. Bioact. Compat. Polym., 10, 1, 4–13, 1995.
80. Bouhadir, K.H., Lee, K.Y., Alsberg, E., Damm, K.L., Anderson, K.W., Mooney, D.J., Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog., 17, 5, 945–50, 2001.
81. Mokhtarzadeh, A., Alibakhshi, A., Hejazi, M., Omidi, Y., Ezzati Nazhad Dolatabadi, J., Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery