Polysaccharides. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Polysaccharides - Группа авторов страница 71
82. Sharma, R. and Sharma, C.L., Macromolecular drugs: Novel strategy in target specific drug delivery. J. Clin. Diagn. Res., 2, 4, 1020, 2008.
83. Noel, S., Fortier, C., Murschel, F., Belzil, A., Gaudet, G., Jolicoeur, M., De Crescenzo, G., Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications. Acta Biomater., 37, 69–82, 2016.
84. Sun, G., Shen, Y.I., Kusuma, S., Fox-Talbot, K., Steenbergen, C.J., Gerecht, S., Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials, 32, 1, 95–106, 2011.
85. Bajaj, I.B., Survase, S.A., Saudagar, P.S., Singhal, R.S., Gellan gum: Fermentative production, downstream processing and applications. Food Technol. Biotechnol., 45, 4, 341–354, 2007.
86. Prajapati, V.D., Jani, G.K., Zala, B.S., Khutliwala, T.A., An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr. Polym., 93, 2, 670–8, 2013.
87. Silva, N.A., Cooke, M.J., Tam, R.Y., Sousa, N., Salgado, A.J., Reis, R.L., Shoichet, M.S., The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/ progenitor cell fate. Biomaterials, 33, 27, 6345–54, 2012.
88. Oliveira, J.T., Santos, T.C., Martins, L., Silva, M.A., Marques, A.P., Castro, A.G., Neves, N.M., Reis, R.L., Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. J. Tissue Eng. Regen. Med., 3, 7, 493–500, 2009.
89. Oliveira, J.T., Gardel, L.S., Rada, T., Martins, L., Gomes, M.E., Reis, R.L., Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. J. Orthop. Res., 28, 9, 1193–9, 2010.
90. Silva-Correia, J., Oliveira, J.M., Caridade, S.G., Oliveira, J.T., Sousa, R.A., Mano, J.F., Reis, R.L., Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J. Tissue Eng. Regen. Med., 5, 6, e97–107, 2011.
91. Smith, L.J., Nerurkar, N.L., Choi, K.S., Harfe, B.D., Elliott, D.M., Degeneration and regeneration of the intervertebral disc: Lessons from development. DMM Dis. Model. Mech., 4, 1, 31–41, 2011.
92. Bacelar, A.H., Silva-Correia, J., Oliveira, J.M., Reis, R.L., Recent progress in gellan gum hydrogels provided by functionalization strategies. J. Mater. Chem. B, 4, 37, 6164–6174, 2016.
93. Mohan, T., Maver, T., Štiglic, A.D., Stana-Kleinschek, K., Kargl, R., 3D bioprinting of polysaccharides and their derivatives: From characterization to application, in: Fundamental Biomaterials: Polymers, 2018.
94. Yanagawa, F., Sugiura, S., Kanamori, T., Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen. Ther., 3, 45–57, 2016.
95. Hong, N., Yang, G.H., Lee, J.H., Kim, G.H., 3D bioprinting and its in vivo applications. J. Biomed. Mater. Res.—Part B Appl. Biomater., 106, 1, 444–459, 2018.
96. Murphy, S.V. and Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol., 32, 8, 773–85, 2014.
97. Percival, N.J., Classification of Wounds and their Management. Surg., 20, 5, 114–117, 2002.
98. Kirker, K.R., Luo, Y., Nielson, J.H., Shelby, J., Prestwich, G.D., Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials, 23, 17, 3661–71, 2002.
99. Cherng, J.-H., The Strategies of Natural Polysaccharide in Wound Healing, in: Wound Healing— Current Perspectives, 2019.
100. Yin, M., Zhang, Y., Li, H., Advances in research on immunoregulation of macrophages by plant polysaccharides. Front. Immunol., 10, 145, 2019.
101. Aduba, D.C. and Yang, H., Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering, 4, 1, 1, 2017.
102. Weiser, J.N., Roche, A.M., Hergott, C.B., LaRose, M.I., Connolly, T., Jorgensen, W.L., Leng, L., Bucala, R., Das, R., Macrophage Migration Inhibitory Factor Is Detrimental in Pneumococcal Pneumonia and a Target for Therapeutic Immunomodulation. J. Infect. Dis., 212, 10, 1667–82, 2015.
103. Schepetkin, I.A. and Quinn, M.T., Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol., 6, 3, 317–33, 2006.
104. Sun, L. and Zhao, Y., The biological role of dectin-1 in immune response. Int. Rev. Immunol., 26, 5–6, 349–64, 2007.
105. Martins, P.R., de Campos Soares, Â.M.V., da Silva Pinto Domeneghini, A.V., Golim, M.A., Kaneno, R., Agaricus brasiliensis polysaccharides stimulate human monocytes to capture Candida albicans, express toll-like receptors 2 and 4, and produce pro-inflammatory cytokines. J. Venom. Anim. Toxins Incl. Trop. Dis., 23, 17, 2017.
106. Dockery, G.D. and Crawford, M.E., Lower Extremity Soft Tissue & Cutaneous Plastic Surgery, Second edition, W.B. Saunders Co Ltd, England, 2012.
107. Aderibigbe, B.A. and Buyana, B., Alginate in wound dressings. Pharmaceutics, 10, 2, 42, 2018.
108. Farrar, D., Advanced wound repair therapies, Elsevier Science & Technology, Woodhead Publishing Ltd, Cambridge, United Kingdom, 2011.
109. Wang, C.H., Chang, S.J., Tzeng, Y.S., Shih, Y.J., Adrienne, C., Chen, S.G., Chen, T.M., Dai, N.T., Cherng, J.H., Enhanced wound-healing performance of a phyto-polysaccharide-enriched dressing—A preclinical small and large animal study. Int. Wound J., 14, 6, 1359–1369, 2017.
110. Eaglstein, W.H., Moist wound healing with occlusive dressings: A clinical focus. Dermatol. Surg., 27, 2, 175–81, 2001.
111. Paul, W. and Sharma, C.P., Chitosan and Alginate Wound Dressings: A Short Review. Trends Biomater. Artif. Organs, 18, 1, 18–23, 2004.
112. Xing, N., Tian, F., Yang, J., Li, Y., II.Characterizations of alginate-chitosan hydrogel for wound dressing application. Adv. Mater. Res., 490–495, 3124–3128, 2012.
113. Devi, M.P., Sekar, M., Chamundeswari, M., Moorthy, A., Krithiga, G., Murugan, N.S., Sastry, T.P., A novel wound dressing material—Fibrin–chitosan–sodium alginate composite sheet. Bull. Mater. Sci., 35, 1157–1163, 2012.
114. Madgulkar, A.R., Rao, M.R.P., Warrier, D., Characterization of psyllium (Plantago ovata) polysaccharide and its uses, in: Polysaccharides: Bioactivity and Biotechnology, 2015.
115. Westerhof, W., Das, P.K., Middelkoop, E., Verschoor, J., Storey, L., Regnier, C., Mucopolysaccharides from psyllium involved in wound healing. Drugs Exp. Clin. Res., 27, 5–6, 165–75, 2001.
116. Patil, B.S., Mastiholimath, V.S., Kulkarni, A.R., Development and evaluation of psyllium seed husk polysaccharide based wound dressing films. Orient. Pharm. Exp. Med., 11, 2, 123–129, 2011.
117. Fernandes, C., Acharya, P.C., Bhatt, S., Preparation of Lauroyl Grafted Alginate-Psyllium Husk Gel Composite Film with Enhanced Physicochemical, Mechanical and Antimicrobial Properties. Sci. Rep., 8, 1, 17213, 2018.
118. Ponrasu, T., Veerasubramanian, P.K., Kannan, R., Gopika, S., Suguna, L., Muthuvijayan,