Polysaccharides. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Polysaccharides - Группа авторов страница 72
119. Rahman, M.M. and Netravali, A.N., Aligned Bacterial Cellulose Arrays as “green” Nanofibers for Composite Materials. ACS Macro Lett., 5, 9, 1070, 2016.
120. Liu, M., Li, S., Xie, Y., Jia, S., Hou, Y., Zou, Y., Zhong, C., Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Appl. Microbiol. Biotechnol., 102, 3, 1155–1165, 2018.
121. Aboelnaga, A., Elmasry, M., Adly, O.A., Elbadawy, M.A., Abbas, A.H., Abdelrahman, I., Salah, O., Steinvall, I., Microbial cellulose dressing compared with silver sulphadiazine for the treatment of partial thickness burns: A prospective, randomised, clinical trial. Burns, 44, 8, 1982– 1988, 2018.
122. Grassi, M., Grassi, G., Lapasin, R., Colombo, I., Understanding drug release and absorption mechanisms: A physical and mathematical approach, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, USA, 2006.
123. Ganguly, K., Chaturvedi, K., More, U.A., Nadagouda, M.N., Aminabhavi, T.M., Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J. Control. Release, 193, 162–73, 2014.
124. Zhu, T., Mao, J., Cheng, Y., Liu, H., Lv, L., Ge, M., Li, S., Huang, J., Chen, Z., Li, H., Yang, L., Lai, Y., Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces, 6, 17, 1900761, 2019.
125. Gopinath, V., Saravanan, S., Al-Maleki, A.R., Ramesh, M., Vadivelu, J., A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 107, 96–108, 2018.
126. Wang, H., He, J., Zhang, M., Tam, K.C., Ni, P., A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym. Chem., 6, 4206–4209, 2015.
127. Auzenne, E., Ghosh, S.C., Khodadadian, M., Rivera, B., Farquhar, D., Price, R.E., Ravoori, M., Kundra, V., Freedman, R.S., Klostergaard, J., Hyaluronic acid-paclitaxel: Antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia, 9, 6, 479–486, 2007.
128. Giannuzzo, M., Feeney, M., Paolicelli, P., Casadei, M.A., Synthesis and characterization of pH-sensitive hydrogels of dextran. J. Drug Deliv. Sci. Technol., 16, 1, 49–54, 2006.
129. Milivojevic, M., Pajic-Lijakovic, I., Bugarski, B., Nayak, A.K., Hasnain, M.S., Gellan gum in drug delivery applications, in: Natural Polysaccharides in Drug Delivery and Biomedical Applications, 2019.
130. D’Arrigo, G., Di Meo, C., Gaucci, E., Chichiarelli, S., Coviello, T., Capitani, D., Alhaique, F., Matricardi, P., Self-assembled gellan-based nanohydrogels as a tool for prednisolone delivery. Soft Matter, 8, 45, 11557–11564, 2012.
131. Singhvi, G., Hans, N., Shiva, N., Kumar Dubey, S., Xanthan gum in drug delivery applications, in: Natural Polysaccharides in Drug Delivery and Biomedical Applications, 2019.
132. Boudoukhani, M., Yahoum, M.M., Lefnaoui, S., Moulai-Mostefa, N., Banhobre, M., Synthesis, characterization and evaluation of deacetylated xanthan derivatives as new excipients in the formulation of chitosan-based polyelectrolytes for the sustained release of tramadol. Saudi Pharm. J., 27, 8, 1127–1137, 2019.
133. Baimark, Y. and Srisuwan, Y., Preparation of polysaccharide-based microspheres by a water-inoil emulsion solvent diffusion method for drug carriers. Int. J. Polym. Sci., 2013, 6, 2013.
134. Wang, W., Liu, X., Xie, Y., Zhang, H., Yu, W., Xiong, Y., Xie, W., Ma, X., Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J. Mater. Chem., 16, 3252–3267, 2006.
135. Saravanakumar, G., Jo, D.-G., Park, J.H., Polysaccharide-Based Nanoparticles: A Versatile Platform for Drug Delivery and Biomedical Imaging. Curr. Med. Chem., 19, 19, 3212–29, 2012.
136. Shen, H.Y., Li, L.Z., Xue, K.C., Hu, D.D., Gao, Y.J., Antitumor activity of fucoidan in anaplastic thyroid cancer via apoptosis and anti-angiogenesis. Mol. Med. Rep., 15, 5, 2620–2624, 2017.
137. Chen, S., Zhao, Y., Zhang, Y., Zhang, D., Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS One, 9, 9, e108157, 2014.
138. Venkatesan, J., Anil, S., Kim, S.K., Shim, M.S., Seaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery. Polymers (Basel), 8, 2, 30, 2016.
139. Huang, Y.C. and Lam, U.I., Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J. Chin. Chem. Soc., 58, 6, 779–785, 2011.
140. Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M.C., Dilbaghi, N., Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym., 101, 1061–7, 2014.
141. Campos, E.V.R., de Oliveira, J.L., Fraceto, L.F., Singh, B., Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev., 35, 1, 47–66, 2014.
142. Habiba, S.U., Shimasaki, K., Ahasan, M.M., Uddin, A.F.M.J., Effect of two bio polysaccharides on organogenesis of PLBs in Dendrobium kingianum cultured in vitro. Acta Hortic., 1167, 127– 132, 2017.
143. Fliervoet, L.A.L., Engbersen, J.F.J., Schiffelers, R.M., Hennink, W.E., Vermonden, T., Polymers and hydrogels for local nucleic acid delivery. J. Mater. Chem. B, 6, 5651–5670, 2018.
144. Raemdonck, K., Martens, T.F., Braeckmans, K., Demeester, J., De Smedt, S.C., Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliv. Rev., 65, 9, 1123–47, 2013.
145. Mizrahy, S. and Peer, D., Polysaccharides as building blocks for nanotherapeutics. Chem. Soc. Rev., 41, 2623–2640, 2012.
146. Zhang, H., Ma, Y., Sun, X.L., Recent developments in carbohydrate-decorated targeted drug/ gene delivery. Med. Res. Rev., 30, 2, 270–289, 2010.
147. Lesley, J., Hascall, V.C., Tammi, M., Hyman, R., Hyaluronan binding by cell surface CD44. J. Biol. Chem., 275, 35, 26967–75, 2000.
148. Park, I.K., Kim, T.H., Park, Y.H., Shin, B.A., Choi, E.S., Chowdhury, E.H., Akaike, T., Cho, C.S., Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J. Control. Release, 76, 3, 349–62, 2001.
149. Thanou, M., Florea, B.I., Geldof, M., Junginger, H.E., Borchard, G., Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 23, 1, 153–9, 2002.
150. Serrano-Sevilla, I., Artiga, Á., Mitchell, S.G., De Matteis, L., de la Fuente, J.M., Natural polysaccharides for siRNA delivery: Nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules, 24, 14, 2570, 2019.
151. Chen, C.J., Zhao, Z.X., Wang, J.C., Zhao, E.Y., Gao, L.Y., Zhou, S.F., Liu, X.Y., Lu, W.L., Zhang, Q., A comparative study of three ternary complexes prepared in different mixing orders of siRNA/ redox-responsive hyperbranched poly (amido amine)/hyaluronic acid. Int. J. Nanomedicine, 7, 3837–3849, 2012.
152. Yin, T., Liu, J., Zhao, Z., Dong, L., Cai, H., Yin, L., Zhou, J., Huo, M., Smart nanoparticles with a detachable outer shell for maximized synergistic antitumor efficacy