Molecular Mechanisms of Photosynthesis. Robert E. Blankenship

Чтение книги онлайн.

Читать онлайн книгу Molecular Mechanisms of Photosynthesis - Robert E. Blankenship страница 34

Molecular Mechanisms of Photosynthesis - Robert E. Blankenship

Скачать книгу

directly, because of the forbidden nature of the S0 to S1 transition. One method that can be used to determine this energy is two‐photon spectroscopy, in which two photons are absorbed simultaneously, with the sum of their energies equal to the transition energy. The S0 to S1 transition is allowed under these conditions (Krueger et al., 1999).

      Bilins are linear, open‐chain tetrapyrrole pigments found in the light‐harvesting antenna complexes known as phycobilisomes, which absorb in the spectral region from 550 to 650 nm. Phycobilisomes are well characterized structurally and spectroscopically and are one of the best understood of the various classes of antenna complexes. We will discuss them in more detail in Chapter 5.

Schematic illustration of structures of two of the most common bilins: phycocyanobilin and phycoerythrobilin.

      The open‐chain tetrapyrrole bilin chromophores are made by a surprisingly complex pathway (Bryant et al., 2020). First, the protoporphyrin IX molecule is synthesized, as described above in the description of chlorophyll biosynthesis. This molecule is converted into a heme by insertion of Fe. The heme is then split open by the action of the enzyme heme oxygenase. Heme oxygenase requires both O2 and NADPH as substrates, producing the molecule biliverdin, which is subsequently reduced, isomerized, and finally ligated to the apoprotein.

      1 Beale, S. I. (1999) Enzymes of chlorophyll biosynthesis. Photosynthesis Research 60: 43–73.

      2 Blankenship, R. E., Tiede, D. M., Barber, J., Brudvig, G. W., Fleming, G., Ghirardi, M., Gunner, M. R., Junge, W., Kramer, D. M., Melis, A., Moore, T. A., Moser, C. C., Nocera, D. G., Nozik, A. J., Ort, D. R., Parson, W. W., Prince, R. C., and Sayre, R. T. (2011) Comparing the efficiency of photosynthesis with photovoltaic devices and recognizing opportunities for improvement. Science 332: 805–809.

      3 Britton, G., Liaaen‐Jensen, S., and Pfander, H., (eds.) (1998) Carotenoids, Vol. III. Basel: Birkhäuser‐Verlag.

      4 Bryant, D. A., Hunter, C. N., and Warren, M. J. (2020) Biosynthesis of the modified tetrapyrroles—The pigments of life. Journal of Biological Chemistry 295: 6888–6925.

      5 Chen, M. (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry 83: 317–340.

      6 Chen, M. and Blankenship, R. E. (2011) Expanding the solar spectrum used by photosynthesis. Trends in Plant Science 16: 427–431.

      7 Chen, M., Schliep, M., Willows, R. D., Cai, Z.‐L., Brett, A., Neilan, B. A., and Hugo Scheer, H. (2010) A red‐shifted chlorophyll. Science 329:1318–1319.

      8 Chen, M., Li, Y., Birch, D., and Willows, R. D. (2012) A cyanobacterium that contains chlorophyll f – A red‐absorbing photopigment. FEBS Letters 586: 3249–3254.

      9 Chew, A. G. M. and Bryant, D. A. (2007) Chlorophyll biosynthesis in bacteria: The origins of structural and functional diversity. Annual Review of Microbiology 61: 113–129.

      10 Dong, C. S., Zhang, W.‐L., Wang, Q., Li, Y.‐S., Wang, X., Zhang, M., and Liu, L. (2020) Crystal structures of cyanobacterial light‐dependent protochlorophyllide oxidoreductase. Proceedings of the National Academy of Sciences USA 117: 8455–8461.

      11 Frank, H., Young, A. J., Britton, G., and Cogdell, R. J., (eds.) (2000) The Photochemistry of Carotenoids: Applications in Biology. Dordrecht: Kluwer Academic Publishers.

      12 Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., and Bryant, D. A. (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far‐red light. Science 345: 1312–1317.

      13 Gouterman, M. (1961) Spectra of porphyrins. Journal of Molecular Spectroscopy 6: 138–163.

      14 Grimm, B., Porra, R. J., Rüdiger, W., and Scheer, H., (eds.) (2006) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. Dordrecht: Springer.

      15 Kee, H. L., Kirmaier, C., Tang, Q., Diers, J. R., Muthiah, C., Taniguchi, M., Laha, J. K., Ptaszek, M., Lindsey, J. S., Bocian, D. F., and Holten, D. (2007) Effects of substituents on synthetic analogs of chlorophylls. Part 2: Redox properties, optical spectra and electronic structure. Photochemistry and Photobiology 83: 1125–1143.

      16 Krueger, B. P., Yom, J., Walla, P. J., and Fleming, G. R. (1999) Observation of the S‐1 state of spheroidene in LH2 by two‐photon fluorescence excitation. Chemical Physics Letters 310: 57–64.

      17 Larkum, A. W. D. and Kuhl, M. (2005) Chlorophyll d: The puzzle resolved. Trends in Plant Science 10: 355–357.

      18 MacColl, R. (1998) Cyanobacterial phycobilisomes. Journal of Structural Biology 124: 311–334.

      19 Masuda, T. (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynthesis Research 96: 121–143.

      20 Niedzwiedzki, D. M. and Blankenship, R. E. (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynthesis Research 106: 227–238.

      21 Ostroumov, E. E., Mulvaney, R. M., Cogdell, R. J., and Scholes, G. D. (2013) Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Science 340: 52–56.

      22 Ouchane, S., Steunou, A. S., Picaud, M., and Astier, C. (2004) Aerobic and anaerobic Mg‐protoporphyrin monomethyl ester cyclases in purple bacteria – A strategy adopted to bypass the repressive oxygen control system. Journal of Biological Chemistry 279: 6385–6394.

      23 Polívka, T. and Frank, H. (2010) Molecular factors controlling photosynthetic light harvesting by carotenoids. Accounts of Chemical Research 43: 1125–1134.

      24 Raymond, J. and Blankenship, R. E. (2004) Biosynthetic pathways,

Скачать книгу