Autonomous Airborne Wireless Networks. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Autonomous Airborne Wireless Networks - Группа авторов страница 14

Autonomous Airborne Wireless Networks - Группа авторов

Скачать книгу

alt="upper P Subscript upper R Baseline equals upper P Subscript upper T Baseline upper G Subscript upper T Baseline upper G Subscript upper R Baseline left-parenthesis StartFraction lamda Subscript c Baseline Over 4 pi d EndFraction right-parenthesis squared comma"/>

      (2.3)PL equals left-parenthesis StartFraction 4 pi d Over lamda Subscript c Baseline EndFraction right-parenthesis Superscript eta Baseline period

      (2.4)PL left-parenthesis d right-parenthesis equals normal upper P normal upper L 0 plus 10 eta log left-parenthesis StartFraction d Over d 0 EndFraction right-parenthesis comma

      Another popular channel model to characterize the AG propagation in UAV communications is the probabilistic path loss model in [4] and [17]. In [17], the path loss between the ground device and the UAV is dependent on the position of the UAV and the propagation environments (e.g. suburban, urban, dense‐urban, high‐rise). Consequently, during the AG radio propagation, the communication link can be either LoS or NLoS depending on the environment. Many of the existing works [18–35] on UAV communications adopted the probabilistic path loss model of [4] and [17]. In these works, the probability of occurrence of LoS and NLoS links are functions of the environmental parameters, height of the buildings, and the elevation angle between the ground device and the UAV. This model is based on environmental parameters defined in the recommendations of the International Telecommunication Union (ITU). In particular, ITU‐R provides statistical parameters related to the environment that determine the height, number, and density of the buildings or obstacles. For instance, in [36], the height of the buildings can be modeled by using the Rayleigh distribution. The average path loss for the AG propagation in [17] is given as

      (2.5)ModifyingAbove PL With bar equals double-struck upper P Subscript LoS Baseline times normal upper P normal upper L Subscript upper L o upper S Baseline plus left-parenthesis 1 minus double-struck upper P Subscript LoS Baseline right-parenthesis times normal upper P normal upper L Subscript upper N upper L o upper S Baseline comma

      where normal upper P normal upper L Subscript upper L o upper S and normal upper P normal upper L Subscript upper N upper L o upper S are the LoS and NLoS path loss, respectively, for the free space propagation. double-struck upper P Subscript LoS is the LoS probability given as

References Scenario eta normal upper P normal upper L 0 (dB) sigma (dB)
Yanmaz et al. [8] Urban/Open field 2.2–2.6
Yanmaz et al. [9] Open field 2.01
2.32
Khawaja et al. [11] Suburban/Open field 2.54–3.037 21.9–34.9 2.79–5.3
Newhall et al. [12] Urban/Rural

Скачать книгу