L'Académie des sciences et les académiciens de 1666 à 1793. Joseph Bertrand

Чтение книги онлайн.

Читать онлайн книгу L'Académie des sciences et les académiciens de 1666 à 1793 - Joseph Bertrand страница 6

L'Académie des sciences et les académiciens de 1666 à 1793 - Joseph Bertrand

Скачать книгу

méridienne d’Uranibourg fut l’occasion d’un grand étonnement. La direction assignée par Tycho présentait dix-huit minutes d’erreur. Devait-on accuser l’habileté ou le soin du grand astronome ou voir dans le déplacement de la méridienne une preuve de la variation du pôle? Un trop grand nombre d’observations s’accordent à prouver le contraire, et il fallut bien admettre chez l’exact et consciencieux Tycho une erreur rendue inexplicable par son évidence même.

      «Nous osons promettre à la postérité, ajoute Picard avec une légitime confiance, que si, dans la suite des temps, on trouve qu’il faille changer de plus d’une minute ce que nous avons établi sur ce sujet, ce sera pour lors que l’on pourra s’assurer de l’instabilité de la ligne méridienne.»

      Le voyage d’Uranibourg donna à l’Académie une force et une gloire nouvelles. Le jeune Roemer, ramené en France par Picard et introduit dans l’Académie, fut d’abord un de ses membres les plus actifs et bientôt un des plus illustres. Roemer en effet a mesuré le premier la vitesse de la lumière, à laquelle Picard par une voie toute différente avait touché de si près. Les satellites de Jupiter, en circulant autour de la planète, traversent périodiquement le cône d’ombre projeté par elle à l’opposé du soleil. Si leur mouvement était uniforme aussi bien que celui de Jupiter, les entrées ou immersions dans le cône d’ombre se succéderaient à intervalles égaux, et il en serait de même des sorties ou émersions; si la lumière se propage instantanément, la régularité des observations reproduira fidèlement celle des phénomènes, mais si au contraire les rayons lumineux emploient un certain temps à parcourir la distance variable qui nous sépare de Jupiter, l’observation inégalement retardée accusera dans les intervalles des différences qui n’ont rien de réel et dont la loi est évidente. Lorsque la terre s’éloigne de Jupiter, nous fuyons pour ainsi dire devant les rayons qu’il nous envoie, le retard va en augmentant, et les intervalles apparents sont plus grands que les intervalles réels. L’effet est contraire lorsqu’en nous rapprochant de la planète, nous allons au-devant de ses rayons. Or un examen facile de la position des astres montre que, dans le premier cas, Jupiter cachant ses satellites au moment de l’immersion, l’émersion est seule visible de la terre; les immersions au contraire le sont seules dans le second cas. Si donc la propagation de la lumière n’est pas instantanée, l’intervalle entre deux immersions consécutives observées doit sembler plus court que celui de deux émersions, et la différence sera d’autant plus grande que la lumière marche moins vite. C’est par ces considérations ingénieuses que Roemer osa fixer à vingt-deux minutes le temps employé par la lumière à traverser le diamètre de l’orbite terrestre. Un paradoxe aussi hardi heurtait non-seulement l’opinion commune mais l’une des assertions les plus résolues et les plus tranchantes de Descartes; les savants devaient y résister.

      Encore que la loi de Roemer paraisse nettement dans les moyennes, lorsqu’en approfondissant la matière on veut chercher dans le détail des observations une preuve plus précise et plus certaine, l’ordre fait place à la confusion, et de continuelles anomalies en altérant les résultats prévus semblent les convaincre d’erreur. Cassini, qui entrant dans la pensée de Roemer en avait vanté d’abord la nouveauté et la force, alléguait contre elles des objections considérables. Pendant que la terre en effet s’éloigne de Jupiter, le premier satellite s’éclipse plus de cent fois; et si, comme l’affirmait Roemer, la vue de la dernière éclipse est retardée de vingt-deux minutes par rapport à celle de la première, l’accroissement moyen de l’intervalle qui sépare deux éclipses est de treize secondes environ. De si petites différences ne sont pas écrites dans les phénomènes en caractères assez visibles, et sans parler des erreurs d’observation d’autres inégalités peuvent, on le comprend, les effacer complétement et en renverser le sens.

      Roemer cependant se défendait avec vigueur et succès. On lit dans l’extrait des registres remis à Colbert en 1678: «M. Roemer a confirmé par de nouvelles observations ses sentiments touchant la vitesse de la lumière, prétendant que son mouvement ne se fait pas en un instant. Comme ce problème est un des plus beaux que l’on ait encore proposés sur ce sujet et que M. Cassini y a trouvé quelques difficultés, on l’a examiné souvent dans l’assemblée. La compagnie a trouvé que cette méthode pour trouver le temps que la lumière des astres emploie à son mouvement est la meilleure et la plus ingénieuse dont on se soit avisé jusqu’à présent.»

      Mais dans l’histoire rédigée par lui des travaux astronomiques de l’Académie, Cassini tient un tout autre langage et se prononce hardiment dans un sens opposé. On a comparé, dit-il, le temps de deux émersions prochaines du premier satellite dans une des quadratures avec le temps de deux immersions prochaines dans la quadrature opposée de cette planète, et bien que la lumière d’un satellite à la fin de sa révolution dans la première quadrature fasse moins de chemin pour venir à la terre dont Jupiter s’approche qu’à la fin de sa révolution dans la seconde, quand Jupiter s’éloigne de la terre et que cette différence monte tout au moins à trois cent mille lieues de chemin dans un temps de plus que dans l’autre, on n’a pas trouvé de différence sensible entre les deux espaces de temps. «Ce n’est pas, ajoute Cassini, que l’Académie ne se soit aperçue, dans la suite de ses observations, que le temps d’un nombre considérable d’immersions d’un même satellite est sensiblement plus court que celui d’un pareil nombre d’émersions, ce qui peut en effet s’expliquer par le mouvement successif de la lumière, mais elle ne lui a pas paru suffisante pour convaincre que le mouvement est en effet successif.» La découverte de Roemer, aujourd’hui solide et inattaquable, a été confirmée par tous les progrès de la science; les objections pouvaient cependant et devaient être faites, et Cassini, en suspendant son jugement, ne fait paraître aucun esprit de dénigrement ou de jalousie.

      La question vingt ans plus tard semblait encore douteuse, et Fontenelle en analysant un travail de Maraldi concluait avec lui ou bien peu s’en faut en faveur de la propagation instantanée. «Il paraît, dit-il, qu’il faut renoncer, quoique peut-être avec regret, à l’ingénieuse et séduisante hypothèse de la propagation successive de la lumière, ou du moins à l’unique preuve certaine que l’on crût en avoir; car une preuve manquée ne rend pas une chose impossible.»

      Une autre expédition plus célèbre encore que celle de Picard fut celle de Richer envoyé à Cayenne pour y faire, sous un ciel et dans un climat nouveaux, d’importantes observations astronomiques. Plusieurs questions lui étaient particulièrement signalées, parmi lesquelles l’observation de la planète Mars excitait au plus haut point l’impatiente curiosité des savants. L’Académie, dit Fontenelle, attendait le retour de ses missionnaires comme l’arrêt d’un juge appelé à prononcer sur les difficultés qui divisent les astronomes. Il s’agissait en effet de déterminer la distance de Mars à la terre pour en conclure le rayon encore inconnu de l’orbite terrestre.

      Les astronomes ne connaissaient que des rapports. Ils savaient très-exactement que la distance de Mars au soleil est une fois et demie celle de la terre au soleil, mais on n’avait sur la grandeur absolue de l’une d’elles que d’insignifiantes conjectures. Anaxagore, en supposant le soleil aussi grand que le Péloponèse, évaluait sa distance à la terre à mille ou douze cents lieues tout au plus. Aristarque, par des mesures ingénieuses mais fort grossières, l’avait portée à douze cents rayons terrestres; Descartes n’en supposait que sept à huit cents; Kepler au contraire avait triplé le nombre d’Aristarque. Les observations de Richer devaient sextupler celui de Kepler.

      Mars alors approchait autant que possible de la terre, et l’on espérait pouvoir mesurer l’angle formé par deux rayons visuels dirigés vers lui au même instant, l’un de Paris, l’autre de Cayenne. Rien de plus facile en théorie que la détermination d’un tel angle. Les difficultés sont toutes d’exécution, mais elles sont considérables.

      Devant la distance des étoiles, le diamètre de la terre disparaît en quelque sorte et s’évanouit; les rayons dirigés vers l’une d’elles par deux observateurs éloignés

Скачать книгу