L'Académie des sciences et les académiciens de 1666 à 1793. Joseph Bertrand

Чтение книги онлайн.

Читать онлайн книгу L'Académie des sciences et les académiciens de 1666 à 1793 - Joseph Bertrand страница 7

L'Académie des sciences et les académiciens de 1666 à 1793 - Joseph Bertrand

Скачать книгу

tout le dénoûment du problème, on perd l’espoir d’obtenir, à deux mille lieues de distance, deux observations réellement simultanées. Il faut s’affranchir de cette condition, et la marche régulière de la planète, soumise à des lois bien connues, permet de calculer d’après la position observée celles qui la précèdent ou qui la suivent; on doit enfin dans une recherche aussi délicate prévoir toutes les causes d’erreur et en corriger les effets.

      L’événement trompa d’abord toutes les espérances. Les erreurs d’observation, en compensant fortuitement les différences de direction, assignèrent une valeur nulle à l’angle qu’on voulait mesurer; mais Cassini, en recherchant jusqu’à la source la cause possible d’un résultat aussi inacceptable, fut conduit à soupçonner un quart de minute d’erreur, en assignant à l’angle une valeur de vingt-cinq secondes que donnaient ses propres observations et qui est exacte. Cassini en effet avait résolu le problème sans employer les observations de Cayenne. Le principe de sa méthode est ingénieux; puisque la comparaison des observations n’exige pas qu’elles soient simultanées, on peut choisir pour les comparer deux observations faites à six heures de distance dans un seul et même observatoire. La terre, dans son mouvement bien connu, emporte l’observateur plus loin de sa position primitive que Paris ne l’est de Cayenne, et la différence de temps peut remplacer la distance des lieux.

      C’est l’observation du pendule qui devait immortaliser surtout le nom de Richer et le souvenir de son expédition. Le pendule qui bat les secondes est plus court à l’équateur qu’à Paris, et ce fait bien observé nous montre par une conséquence très assurée que la pesanteur y est moindre. Huyghens, en évaluant la force centrifuge produite par la rotation de la terre, fit connaître une cause considérable mais non pas unique de cette diminution qui se rattache avec certitude à la forme aplatie de la terre. Mais la suite de ces déductions est accessible aux seuls géomètres, et les autres savants n’y virent pendant bien des années qu’une ingénieuse conjecture qu’ils discutaient sans s’entendre. Il restait donc beaucoup à faire pour fixer les esprits et rendre la démonstration convaincante. Cinquante ans plus tard les deux partis jugeaient nécessaire une nouvelle expédition académique qui, pour les mettre d’accord, dut chercher des preuves évidentes et irréfragables dans des mesures directes et précises.

      Le roi Jacques II, dans une visite à l’Observatoire de Paris le 27 avril 1690, avait rapporté l’opinion de Newton sur l’aplatissement de la terre. Les académiciens dans leur réponse invoquent assez singulièrement les observations de Richer pour repousser une théorie dont elle fournit la preuve la plus assurée. «On répondit, dit le procès-verbal, que cette idée était venue à quelques-uns à l’occasion de quelques observations de Jupiter qui a paru quelquefois n’être pas parfaitement sphérique, mais que la partie de l’ombre de la terre qui tombe sur la lune paraissait assez circulaire pour persuader que la figure de la terre ne s’éloigne pas sensiblement de la sphérique, que cette conjecture avait été assez fortifiée par les observations de la longueur des pendules faites par les personnes envoyées par l’Académie des sciences à Cayenne, au cap Vert et aux Antilles, où le pendule à secondes s’est trouvé constamment sensiblement plus court que dans notre climat, mais que cette différence pouvait être attribuée aux températures de l’air, puisque dans un même lieu nous trouvons une petite différence entre l’été et l’hiver.» Cette explication est inacceptable, et une température de 200 degrés au moins serait nécessaire pour produire les effets observés.

      Les expériences sur la transfusion du sang faisaient grand bruit en Angleterre. L’Académie prit soin de les reproduire et de les varier. Les Anglais remplaçaient hardiment le sang d’un homme par celui d’un sujet plus robuste ou mieux portant, en espérant par là changer non-seulement le tempérament mais le caractère du patient. Le sang d’un lion par exemple devait enflammer l’homme le plus timide et lui donner avec une noble fierté un courage invincible. Les savants de Londres pour guérir un fou avaient remplacé la plus grande partie de son sang par celui d’un homme sain d’esprit; mais le malade, continuant à déraisonner sur tous les points sauf sur un seul peut-être, courait les rues de Londres en se disant le martyr de la Société royale. Les académiciens français opérèrent seulement sur des chiens. Ils ne furent pas heureux. L’animal qui donnait son sang se rétablissait assez bien, l’autre languissait et mourait presque toujours. Le parlement informé de ces résultats défendit par arrêt la transfusion comme inutile et dangereuse.

      La machine pneumatique, inventée à Magdebourg par Otto de Guéricke et apportée par Huyghens devant l’Académie, fut aussi pour elle un sujet d’études et l’instrument d’expériences très nombreuses. Parmi les singularités observées on peut signaler l’effet produit sur un poisson qui, placé sous le récipient dans un vaisseau plein d’eau, tomba au fond sans pouvoir remonter, même après la rentrée de l’air. Sa vessie natatoire s’était vidée d’air et ne fonctionnait plus.

      C’est Huyghens également qui annonça le premier à l’Académie la force expansive de la glace, en profitant pour la rendre sensible du rude hiver de 1668.

      Le phosphore de l’urine, découvert par Brandt, fut également mis sous les yeux de l’Académie et préparé par Homberg dans le laboratoire. L’Académie ces jours-là devenait une école, et l’un de ses membres transformé en professeur donnait l’enseignement à tous les autres.

      Colbert pendant toute sa vie se montra favorable à la compagnie qu’il avait fondée. Plein de ménagements et de prévenances pour elle, soigneux de ses intérêts comme de sa dignité, facile à ses projets et à ses entreprises, il se plaisait à lui rendre de bons offices. Informé des travaux commencés, attentif en même temps aux recherches particulières et animant chacun dans ses propres desseins, il savait soutenir sans diriger; habile à juger les hommes et les éprouvant au besoin, il se faisait le protecteur et l’appui, non le guide de ceux qu’il avait appréciés et choisis. Sa mort fut un grand malheur pour les savants. L’impérieux Louvois, second protecteur de l’Académie, s’occupa fort peu d’elle et fort mal. L’esprit qui l’animait n’était pas celui de la science. Les intérêts du roi étaient pour lui la loi suprême, et le soin de sa grandeur la seule affaire de conséquence. Les bienfaits et la faveur dont il daignait les honorer imposaient aux académiciens l’obligation de se tenir toujours sous sa main prêts à servir ses projets en s’y appliquant tout entiers.

      Le 16 février 1686 un M. de La Chapelle, délégué par Louvois et interprète de ses volontés, vint proposer à l’Académie une distinction fausse et grossière entre les recherches utiles et la science de pure curiosité, comme s’il existait deux lumières, l’une pour guider les hommes, l’autre pour charmer leurs yeux. «J’ai déjà eu l’honneur de dire à l’Académie, dit M. de la Chapelle, que Mgr de Louvois demande ce que l’on peut faire au laboratoire; il m’a ordonné d’en parler encore. Ne peut-on pas considérer ce travail ou comme une recherche curieuse ou comme une recherche utile? J’appelle recherche curieuse ce qui n’est qu’une pure curiosité ou qui est pour ainsi dire un amusement des chimistes; cette compagnie est trop illustre et a des applications trop sérieuses pour ne s’attacher ici qu’à une simple curiosité. J’entends une recherche utile celle qui peut avoir rapport au service du roi et de l’État.» Le nouveau protecteur prétendait, on le voit, retrancher les curiosités inutiles et les amusements de l’esprit; où la curiosité n’est pas admise pour elle-même, il ne faut pas espérer cependant que la science se développe et reste en honneur. Mais l’Académie, accoutumée à s’incliner au moindre signe venu de si haut, n’avait pas à discuter avec un ministre tout-puissant.

      M. de La Chapelle avait fait connaître quelques-uns des problèmes utiles dont on désirait la solution. Ne serait-il pas permis, disait-il, d’examiner les effets du mercure, de l’antimoine, du quinquina, du laudanum et du pavot selon les différentes préparations, et de faire des analyses exactes du thé, du café et du cacao dont l’usage se rend si commun, soit comme remède, soit comme aliment?

      M.

Скачать книгу