Estructuras de álgebra multilineal. Joaquín Olivert Pellicer
Чтение книги онлайн.
Читать онлайн книгу Estructuras de álgebra multilineal - Joaquín Olivert Pellicer страница 22
Probemos que f es una biyección: Partimos de
Si v, u son distintos, uno será mayor que el otro (por ser ordinales). Sea, por ejemplo, v < u. Y ello conduce a que f{v) Im f|u. Pero por (3.2.2), f(u) Im f|, que contradice (3.2.1). Luego / es una inyección.
Evidentemente def f ≠
Puesto que def f
es decir, x = Im f. Entonces f|def es una aplicación biyectiva entre el ordinal def f y el conjunto x.
El siguiente teorema también es debido a Zermelo :
Teorema 3.3: (de la buena ordenación) Todo conjunto admite un buen orden.
Demostración :
Consideremos un conjunto X. Por el teorema anterior, existe una biyección f entre X y un ordinal y. Construyamos a partir de f un buen orden en X, definiendo la relación de orden
A su vez de este resultado deducimos la siguiente proposición :
Teorema 3.4: Si X es un conjunto cuyos elementos son conjuntos no vacíos disjuntos dos a dos, entonces existe un conjunto C que contiene exactamente un elemento de cada elemento de X.
Demostración :
Llamemos Y =
Y por el Teorema 2.1 del Capítulo 1, C es conjunto.
Teorema 3.5: El Teorema 3-4 implica el axioma de Zermelo.
Demostración :
Sea X un conjunto, y definamos
Obviamente existe una biyección entre X e Y, por lo que resulta que Y es conjunto, con la propiedad de que sus elementos son disjuntos dos a dos. En virtud del Teorema 3.4, construyamos la relación binaria
El mismo teorema prueba que para cada u existe un solo v, por lo que f es una función. Se obtiene de inmediato el Axioma de Zermelo si sustituimos X por P(X). En este caso f sería la función de elección.
Con estos teoremas estudiados, se ha puesto de manifiesto que el Axioma de elección de Zermelo, el Teorema de numerabili dad, el Teorema de la buena ordenación de Zermelo y la Proposición
3.4 son equivalentes. De hecho en muchas ocasiones algunos autores toman esta última proposición como el axioma de elección.
El Axioma de elección de Zermelo posee otras equivalencias que vamos a tratar. Se necesita otros conceptos como es el de cadena, el de elemento maximal y el de conjunto inductivo. El primero de ello se enuncia como :
Definición 3.6: Una clase k se dice que es una cadena si para x, y
Lema 3.7: Si k es una cadena y cada miembro de k es una cadena, k es una cadena.
Demostración :
Tomemos x, z
Principio maximal de Hausdorff
Teorema 3.8: Sea x un conjunto. Existe una cadena n tal que n ⊂ x, de manera que dada otra cadena m con m ⊂ x y n ⊂ m, se cumple n = m.
Demostración :
Para cada aplicación h definimos la clase
Evidentemente Yh es conjunto por verificar Yh ⊂ V(x). Tomemos una función F que satisfaga el Axioma de elección y definimos la aplicación g como