Bases ecológicas para el manejo de plagas. Sergio A. Estay

Чтение книги онлайн.

Читать онлайн книгу Bases ecológicas para el manejo de plagas - Sergio A. Estay страница 14

Автор:
Серия:
Издательство:
Bases ecológicas para el manejo de plagas - Sergio A. Estay

Скачать книгу

J. (1993). Measuring fitness in life, history studies. Trends in Ecology and Evolution, 8(3), 84-85.

      Lafferty, K. D. (2009). The ecology of climate change and infectious diseases. Ecology, 90(4), 888-900. Lawson, C.R., Vindenes, Y., Bailey, L., y Pol, M. (2015). Environmental variation and population responses to global change. Ecology letters, 18(7), 724-736.

      Ma, G., Hoffmann, A. A., y Ma, C. S. (2015). Daily temperature extremes play an important role in predicting thermal effects. Journal of Experimental Biology, 218, 2289-2296.

      Meehl, G. A., y Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994-997.

      Mitchell, K. A. y Hoffmann, A. (2009). Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Functional Ecology, 24(3), 694-700.

      Noireau, F., Cortez, M. G. R., Monteiro, F. A., Jansen, A. M., y Torrico, F. (2005). Can wild Triatoma infestans foci in Bolivia jeopardize Chagas disease control efforts? Trends in Parasitology, 21(1), 7-10.

      Nyamukondiwa, C., y Terblanche, J. S. (2009). Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. Journal of Thermal Biology, 34(8), 406-414.

      Paaijmans, K. P., Blanford, S., Bell, A. S., Blanford, J. I., Read, A. F., y Thomas, M. B. (2010). Influence of climate on malaria transmission depends on daily temperature variation. Proceedings of the National Academy of Sciences, 107(34), 15135-15139.

      Paaijmans, K. P., Heinig, R. L., Seliga, R. A., Blanford, J. I., Blanford, S., Murdock, C. C., y Thomas, M. B. (2013). Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19(8), 2373-2380.

      Pachauri, R. K., y Reisinger, A. (2007). Cambio climático 2007: Informe de Síntesis. Contribución de los grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC).

      Pascual, M., y Bouma, M. J. (2009). Do rising temperatures matter. Ecology, 90(4), 906-912. Pásztor, L., Meszena, G., y Kisdi, E. (1996). R0 or r: a matter of taste? Journal of Evolutionary Biology, 9(4), 511-516.

      Pörtner, H.O. (2002). Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132(4), 739-761.

      Puurtinen, M., Elo, M., Jalasvuori, M., Kahilainen, A., Ketola, T., Kotiaho, J. S., Mönkkönen, M., y Pentikäinen, O. T. (2016). Temperature dependent mutational robustness can explain faster molecular evolution at warm temperatures, affecting speciation rate and global patterns of species diversity. Ecography 39(11), 1025-1033.

      Rezende, E.L., Tejedo, M., y Santos, M. (2011). Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Functional Ecology, 25(1), 111-121.

      Rezende, E. L., Castañeda, L. E., y Santos, M. (2014). Tolerance landscapes in thermal ecology. Functional Ecology, 28 (4), 799-809.

      Ricker, W. E. (1958). Maximum sustained yields from fluctuating environments and mixed stocks. Journal of the Fisheries Board of Canada, 15(5), 991-1006.

      Roff, D. A. (2010). Modeling evolution: an introduction to numerical methods. Oxford: Oxford University Press.

      Saxon, A. D., O’brien, E. K., y Bridle, J. R. (2018). Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest Drosophila. Journal of Evolutionary Biology, 31(3), 405-415.

      Schofield, C. J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends in parasitology, 22(12), 583-588.

      Schulte, P. M., Healy, T. M., y Fangue, N. A. (2011). Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51(5), 691-702.

      Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., y Huey, R. B. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters, 19(11), 1372-1385.

      Sunday, J. M., Bates, A. E., y Dulvy, N. K. (2010). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences, rspb20101295.

      Terblanche, J. S., Hoffmann, A. A., Mitchell, K. A., Rako, L., le Roux, P. C., y Chown, S. L. (2011). Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 214(22), 3713-3725.

      Terblanche, J. S., Klok, C. J., Krafsur, E. S., y Chown, S. L. (2006). Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. The American Journal of Tropical Medicine and Hygiene, 74(5), 786-794.

      Terblanche, J. S., Nyamukondiwa, C., y Kleynhans, E. (2010). Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomologia Experimentalis et Applicata, 137(3), 304-315.

      Townson, H., Nathan, M., Zaim, M., Guillet, P., Manga, L., Bos, R., y Kindhauser, M. (2005). Exploiting the potential of vector control for disease prevention. Bulletin of the World Health Organization, 83(12), 942-947.

      Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D., McCann, K. S., y O’Connor, M. I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society of London B: Biological Sciences, 281(1779), 2013-2612.

      Wang, X. G., Levy, K., Son, Y., Johnson, M. W., y Daane, K. M. (2012). Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biological Control, 60(3), 247-254.

      WHO (2002). Control of Chagas disease. WHO Tech Rep Series 905. Geneva, Switzerland. World Health Organization.

      WHO (2012). Global strategy for dengue prevention and control. Geneva, Switzerland: World Health Organization.

      Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A., y Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology, 6(12), e325.

      Wilson, K. (2009). Climate change and the spread of infectious ideas. Ecology, 90(4), 901-902. Zhang, W., Rudolf, V. H., y Ma, C. S. (2015). Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia, 179(4), 947-957.

      Zhao, F., Zhang, W., Hoffmann, A.A., y Ma, C. S. (2014). Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. Journal of Animal Ecology, 83(4), 769-778.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте

Скачать книгу