Manual de matemáticas financieras. Guillermo L. Dumrauf

Чтение книги онлайн.

Читать онлайн книгу Manual de matemáticas financieras - Guillermo L. Dumrauf страница 12

Автор:
Серия:
Издательство:
Manual de matemáticas financieras - Guillermo L. Dumrauf

Скачать книгу

pues, si hoy contamos con 1 €, tenemos la oportunidad de colocarlo a interés durante un año, al cabo del cual tendremos el euro inicial más el interés ganado:

      Figura 1.1 Valor futuro de un euro colocado a interés.

      Regla: un euro del futuro vale menos que un euro del presente.

      Si tenemos el derecho a cobrar un euro dentro de un año, pero deseamos el efectivo, su disponibilidad inmediata tendrá un precio, que es el descuento: recibiremos solamente el valor presente del euro futuro:

      Figura 1.2 Valor presente de un euro futuro.

      En el ejemplo anterior, solo había un período en la operación. El valor tiempo del dinero a veces nos da sorpresas, especialmente cuando hay capitalización compuesta de intereses. Imagine que a usted le han prestado un euro hoy a una tasa del 20 % anual. Dentro de 5 años, usted debería casi 2,5 euros. La figura 1.3 muestra la evolución de un euro a lo largo de 5 años, con capitalización de intereses para cada año:

      Figura 1.3 Evolución de un euro en 5 años.

      Figura 1.4 Evolución de 1 millón al 9,6% anual compuesto.

      Hetty Green probó que las mujeres no son «financieramente» inferiores al hombre. Según cuenta la leyenda, batalló con los mejores hombres financieros y ganó varias veces. Hoy las mujeres tienen mayores oportunidades para trabajar en el área de finanzas y esto se refleja en una mayor participación de mujeres en trabajos que antes ocupaban solamente los hombres.

      La tasa de interés representa el precio de la unidad de capital en la unidad de tiempo. En tal sentido, representa el precio por «alquilar» una unidad o un euro de capital. Para los cálculos matemáticos, la tasa de interés siempre es expresada en tanto por uno. Por ejemplo, para una tasa de interés del diez por ciento, sería:

      0,10 (en tanto por uno) Multiplicando 0,10 × 1 = 0,10

      En este ejemplo, la tasa de interés y el interés coinciden; pero solamente ocurrirá cuando el capital es igual a la unidad: para un capital cualquiera, por ejemplo, C = 900, entonces 0,10 × 900 = 90.

      El interés representa el valor absoluto (el valor en «metálico») que resulta de multiplicar la tasa de interés por un capital.

      Recuerde que la tasa de interés siempre expresa un valor relativo mientras que el interés representa una magnitud absoluta, en «metálico». La tasa de interés aparece expresada simbólicamente también en tanto por ciento, generalmente cuando es publicitada en las pizarras de los bancos (por ejemplo, podemos ver que los bancos publicitan las tasas de interés para los depósitos a plazo fijo como 1 % para 30 días, etc.).

      A veces se confunde el porcentaje de rendimiento con la cantidad de veces en que crece un capital o un índice de precios. La tabla 1.1 aclara la diferencia. Mientras que un incremento del 100 % es igual a 2 veces de incremento en el capital, 900 % es igual a 10 veces:

Capital al inicioCapital al finalIncremento en porcentajeIncremento en cantidad de veces
100200100 %2
1001000900 %10

      Es fácil ver que 1000 es igual a 100 diez veces; sin embargo, para calcular el porcentaje de incremento, la cuenta clásica es 1000/100 − 1, y luego multiplicamos este resultado por 100 para obtener el porcentaje de incremento. En el Capítulo 2, cuando tratemos el interés simple, se aclarará perfectamente por qué se realiza de esta forma el cálculo del incremento porcentual.

      La tasa de interés suele contener siempre tres componentes: la inflación, el interés puro y el riesgo. En esta sección analizaremos brevemente los dos primeros y en la próxima sección veremos el componente riesgo.

      Además, es justo que la tasa de interés tenga un rendimiento que recompense, además de la inflación, la espera. Cuando un individuo deposita dinero en el banco, pospone su consumo mientras el individuo que recibe ese dinero lo anticipa. Esa espera, que no es otra cosa que el «alquiler» del dinero, representa el «interés puro» o real. Cuando la tasa de interés supera a la inflación, la tasa de interés real es positiva; cuando la inflación supera a la tasa de interés, la tasa de interés real es negativa.

      Cuanto mayor es el riesgo de una inversión, mayor debe ser la recompensa por asumir dicho riesgo y, por lo tanto, mayor deberá ser la tasa de interés que rinde dicha inversión. Es natural que a las inversiones peligrosas se les exija un mayor premio a cambio para compensar el riesgo asumido.

       Regla: un euro invertido con riesgo vale menos que un euro invertido sin riesgo.

      Imagine

Скачать книгу