Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews. Владимир Георгиевич Брюков
Чтение книги онлайн.
Читать онлайн книгу Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews - Владимир Георгиевич Брюков страница 10
Таким образом, данные, представленные в столбце Коэффициенты, дают нам возможность составить – путем подстановки соответствующих цифр в формулу (2.2) – следующее уравнение линейной парной регрессии:
y = 0,1622x + 1,9958;
где независимая переменная x означает порядковый номер месяца (июнь 1992 г. =1, а апрель 2010 г. = 215), а зависимая переменная y – ежемесячное значение курса доллара.
При этом экономическая интерпретация данного линейного уравнения следующая: в период с июня 1992 по апрель 2010 г. курс доллара к рублю ежемесячно рос со средней скоростью 16,22 коп. при исходном уровне временного ряда в размере одного рубля и 99,58 коп. В свою очередь, геометрическая интерпретация данного линейного уравнения следующая: свободный член уравнения =1,9958 показывает точку пересечения линии тренда с осью Y, а коэффициент уравнения 0,1622x равен углу наклона линии тренда к оси X.
Таблица 2.4. Коэффициенты уравнения регрессии и их статистическая значимость
2. В столбце СТАНДАРТНАЯ ОШИБКА сгенерированы стандартные ошибки свободного члена и коэффициента регрессии, значения которых даны в предыдущем столбце табл. 4. При этом стандартная ошибка свободного члена уравнения регрессии находится по формуле (2.16):
где MS ост.= D ост. – остаточная дисперсия на одну степень свободы. Для нашего случая стандартная ошибка свободного члена уравнения регрессии вычисляется следующим образом:
В свою очередь, стандартная ошибка коэффициента регрессии оценивается по формуле (2.17):
Для нашего случая стандартная ошибка коэффициента регрессии рассчитывается таким образом:
3. В столбце t-СТАТИСТИКА даны расчетные значения t-критерия. При этом для свободного члена t-статистика вычисляется по формуле (2.18):
где a – коэффициент свободного члена уравнения.
В нашем случае t-статистика находится следующим образом:
Для коэффициента регрессии t-статистика рассчитывается по формуле (2.19):
где b – коэффициент регрессии
В нашем случае t-статистика находится следующим образом:
4. В столбце Р-ЗНАЧЕНИЕ сгенерированы уровни значимости, соответствующие вычисленным в предыдущем столбце значениям t-статистики.
В Excel Р-значение находится с помощью следующей функции:
СТЬЮДРАСП (Х=tст.;df=n-k-1;хвосты=2);
где в опции Х дается t-статистика, для которой нужно вычислить двустороннее распределение; в опции df – число степеней свободы; в опции хвосты – цифра 2 для двустороннего распределения.