Большой роман о математике. История мира через призму математики. Микаэль Лонэ

Чтение книги онлайн.

Читать онлайн книгу Большой роман о математике. История мира через призму математики - Микаэль Лонэ страница 9

Большой роман о математике. История мира через призму математики - Микаэль Лонэ Non-fiction. Best

Скачать книгу

линейку очень просто: ее достаточно натянуть между двумя зафиксированными точками, и получалась идеально ровная линия. Если требовалось определить длину, достаточно было сделать узлы на одинаковых расстояниях друг от друга по длине веревки. Использовать ее в качестве циркуля также было совсем не сложно. Одна из точек фиксировалась в земле, а точкой на веревке очерчивалась окружность на земле – так получался ровный круг. Чтобы начертить окружность определенного радиуса, достаточно было сделать разметку на веревке и начертить окружность, используя точку на веревке, расположенную на соответствующем количестве размеченных отрезков от центра.

      А вот для того, чтобы использовать веревку для разметки угла, наоборот, требовалось приложить определенные усилия. Давайте на минуточку задумаемся над конкретной задачей: как изобразить прямой угол? На ум сразу приходят несколько способов. Если, например, нарисовать две окружности, пересекающиеся между собой, а затем соединить их центры и две точки пересечения, то две полученные линии будут перпендикулярны друг другу, образуя, таким образом, прямой угол.

      С теоретической точки зрения этот способ безупречен, но вот на практике пользоваться им крайне неудобно. Представьте, как землемеры выходят на поле и начинают расчерчивать две окружности каждый раз, когда им требуется разметить прямой угол или проверить точность уже размеченных перпендикулярных линий. Такой способ оказывается на деле небыстрым и неэффективным.

      Однако был и более практичный метод, который активно использовали землемеры: образование треугольника с прямым углом, используя саму веревку. Такой треугольник получил название прямоугольный треугольник. И самый распространенный среди них – со сторонами 3–4–5! Если вы возьмете веревку, разделенную на двенадцать частей тринадцатью узлами, вы сможете образовать треугольник со сторонами в 3, 4 и 5 интервалов соответственно. И магическим образом угол, образованный сторонами в 3 и 4 интервала, будет прямым.

      За 4000 лет до этого жители Вавилона уже разработали специальные таблицы, позволяющие делать прямоугольные треугольники. Табличка «Плимптон 322», которая в настоящее время хранится в коллекции Колумбийского университета в Нью-Йорке, была создана приблизительно в 1800 г. до н. э. и представляет собой таблицу из пятнадцати комбинаций таких чисел. Помимо 3–4–5 там приводятся еще четырнадцать комбинаций, среди которых такие сложные, как 65–72–97 и даже 1679–2400–2929. За исключением нескольких незначительных опечаток, ставших следствием ошибки в расчетах или неправильного переписывания, треугольники из Плимптонской таблицы абсолютно правильные: в каждом из них есть прямой угол!

      Сложно точно сказать, с какого момента вавилонские землемеры начали использовать свои познания об определении прямого угла на земле. В любом случае эти знания нашли свое применение много лет спустя исчезновения шумерской цивилизации. В Средние века веревка

Скачать книгу