EL MISTERIO DE LA BELLEZA EXACTA. Sergey Baksheev

Чтение книги онлайн.

Читать онлайн книгу EL MISTERIO DE LA BELLEZA EXACTA - Sergey Baksheev страница 13

EL MISTERIO DE LA BELLEZA EXACTA - Sergey Baksheev

Скачать книгу

loa años sus notas se hacían siempre más cortas. Creó sus propias notaciones condicionales. Cuando producía una idea, ponía un signo de admiración. Método de solución, dos signos de admiración. Una cadena lógica de demostración, tres signos.

      Hoy, en su propia mesa, no vio entre sus papeles la parte relacionada con el Teorema de Fermat. Era un largo manuscrito de muchos pasos en cuyos bordes había unitarios signos de admiración e, inclusive, hasta dobles. En el transcurso de largos años había escrito, en el, diferentes ideas relacionadas con el Teorema de Fermat. Unas lo acercaban a la demostración, otras lo llevaban a un callejón sin salida.

      La desaparición de su manuscrito en un primer momento lo disgustó, pero ahora ya no le preocupaba. Ya que él lo sacó del fondo del escritorio, para revivir recuerdos agradables de sus primeros descubrimientos, para después botarlo como innecesario.

      Y puede ser que todavía esté en la mesa. Es complicado ordenar esos papeles. Se pierden y se esconden, por eso, todos los resultados matemáticos se guardaban en su cabeza. Y sólo cortas notas, como indicaciones en un laberinto, Danin las ponía en su libreta.

      El matemático tocó sus bolsillos. Los meticulosos policías le habían quitado la libreta y el lápiz, junto con las trenzas, antes de llevarlo a la celda. Por cierto, en sus páginas perdidas, al lado de fórmulas escritas en letra menuda, se encontraban, frecuentemente, tres signos de admiración.

      Konstantin Danin recordó la singular razón de su paseo matinal de hoy y se sonrió con sorna.

      9

      El inquisitivo Kostia Danin, de séptimo grado, leía con ansias el libro que le regaló la maestra sobre el enigmático Teorema de Fermat. Decenas de los más sobresalientes matemáticos se habían dedicado a su demostración. Algunos habían avanzado bastante, obteniendo importantes resultados intermedios. Pero quien obtendrá el honor de ser el primero? Quien correrá la cortina del misterio y mostrará al mundo una demostración armónica y ordenada? Esa demostración deberá ser impecablemente hermosa, Kostia no lo dudaba.

      El pasaba página tras página saboreando por anticipado el encuentro con la bella solución. Pero en el último capítulo lo esperaba una cruel decepción. La espera fue infructuosa. El libro no tenía la demostración completa del Gran Teorema. Además, el libro informaba que después de varios siglos nadie había podido encontrar la “demostración realmente admirable” del enigmático Fermat.

      Al adolescente le costaba trabajo digerir la paradoja. Como era posible que después de tres siglos y medio que la ciencia había alcanzado tales alturas, haber pasado de los carros de tracción animal a aviones a reacción, la división del átomo, la conquista de la luna, una simple ecuación de tres incógnitas no hubiera sido resuelta. Eso contradice el progreso universal!

      Las tareas escolares se apartaron. Con valentía ingenua y entusiasmo infinito Kostia Danin decidió buscar la demostración. Efectivamente él, vencedor de la olimpíada matemática de la ciudad a finales del siglo veinte, no posee menos conocimientos que un aficionado a las matemáticas de la provincia francesa de la edad media. Si las solución del enigma fue posible a un diletante, probablemente también lo será al mejor alumno de la escuela especializada en matemáticas.

      Y los matemáticos experimentados? Por qué no tuvieron éxito? Seguramente algo no notaron, decidió Kostia.

      El prudente Félix Basilievich también vio el libro. Pero a diferencia de Konstantin lo hojeó sin mucho interés, entendió la idea y enseguida miró el final. Entonces el Teorema de Fermat no estaba demostrado! Lo valoran como el más grande enigma matemático. El primero que encuentre la demostración recibirá la gloria y, un premio en dinero.

      Félix razonó. Para el, esto significaba la respuesta a su pregunta: cómo actuar, inteligente o con trucos? El adolescente pragmático, ya hacía tiempo, había reducido casi todos sus problemas de vida a esas dos opciones. Inteligente significaba la búsqueda individual persistente con ayuda de sus conocimientos y deducciones. Y, con trucos, significaba la búsqueda de variantes paralelas, con la ayuda de conocidos disponibles y circunstancias escondidas. Justamente así, con trucos, entró en la olimpíada de la ciudad, cuando se copió de Danin la solución del problema más difícil y obtuvo el tercer lugar. Si, contra el Teorema de Fermat se rompieron dientes generaciones de grandes matemáticos, razonó Félix, gastar sus propias fuerzas en la solución no es aconsejable. Conectarse con el genio de Danin y estar siempre a su lado, para que en el caso de éxito, anotarse como coautor. Eso era mucho más efectivo. Entonces será con trucos, decidió Basilievich.

      Sin embargo, empujar a Danin hacia el Teorema de Fermat, no fue necesario. El mismo Konstantin se zambulló en el torbellino de fórmulas como en una Fuente viva después de un vagabundeo agotador. Durante unas buenas tres semanas se enterró en cálculos, faltó a clase frecuentemente, le bajaron sus calificaciones e, inclusive, se despertaba en el medio de la noche para escribir sus notas. Pero todas las soluciones resultaron fallidas.

      Después de algunas noches de insomnio el decepcionado alumno de séptimo grado debió reconocer que lo alcanzó la misma triste suerte que a cientos de sobresalientes matemáticos. El Gran Teorema resultó inaccesible. VI lo consoló cariñosamente: quien busca, siempre encuentra. Tienes toda la vida por delante. Kostia se puso melancólico, pero de su meta no se apartó. Cambió el impetuoso ardor por el estudio planificado de los éxitos y errores de sus predecesores.

      Tatiana Arkhangelskaia, habiéndose convertido de una muchachita angulosa en una exuberante y coqueta señorita, notó con su sexto sentido femenino el chapoteo intelectual del desgarbado Konstantin. Eso la atraía y utilizó cualquier excusa para estar al lado de él. Cuando al final del octavo grado llegó la noticia que un loco roció ácido y dañó un cuadro de Rembrandt en el Hermitage, ella lo arrastró al museo. “Antes que los psicóticos no destruyan todo, debemos disfrutar esas grandes obras de arte” – bromeó.

      En la sala de Rembrandt, Konstantin se detuvo ante el sitio vacío de la pared sobre el cual estaba el cuadro “Danae”, e internamente sonrió. Que fácil era destruir la belleza hecha con las manos. El arte es indefenso en las manos de los vándalos. Las pinturas y esculturas deben ser cuidadosamente protegidas. Su valor se calcula en millones y copias exactas se consiguen por algunas monedas. Si no hay bárbaros, de todas maneras el tiempo despiadado no las repone. Y así, los cuadros y los monumentos de piedra, están sometidos a la destrucción. Los siglos y los elementos destruyen todo. Inclusive las siete maravillas de la humanidad no pueden ser protegidas. La belleza de las producciones artísticas es frágil y no es eterna.

      Otra cosa son las elegantes demostraciones matemáticas. Su belleza no palidece con los años, las puedes entender o no, pero no puedes destruirlas. Inclusive si quemas un manuscrito con alguna solución, rigurosos razonamientos lógicos quedan en el cerebro de los matemáticos y todo puede ser reconstruido. Algunos geniecitos pomposos, discutiendo una u otra tendencia del arte, no pueden contradecir la veracidad de la demostración matemática. Una vez demostrada una afirmación matemática ya nunca desaparecerá, ya nadie la torcerá ni contradirá. Perecieron, sin dejar huella, seis de las siete maravillas del mundo, destruidas u olvidadas decenas de miles de producciones artísticas que eran grandes e irrepetibles, pero el teorema de Pitágoras ha sido inmutable durante dos mil quinientos años. Su belleza no se opaca. Todas las nuevas variantes de la demostración no hacen sino embellecerla más.

      Tatiana Arkhangelskaia se sorprendió de la reacción de Kostia quien normalmente indiferente al arte. Mucho tiempo estuvo frente al sitio de la pintura ausente. En su rostro se reflejaba la lucha entre la oscura tristeza y la radiante esperanza.

      “Vamos a la otra sala. Allá están los adornos de oro —, la muchacha lo halaba con insistencia – es realmente bonito”. Konstantin continuó mirando el sitio en la

Скачать книгу