Organic Mechanisms. Xiaoping Sun

Чтение книги онлайн.

Читать онлайн книгу Organic Mechanisms - Xiaoping Sun страница 20

Автор:
Жанр:
Серия:
Издательство:
Organic Mechanisms - Xiaoping Sun

Скачать книгу

for the reactant molecules to collide effectively giving the products, they must overcome an energy barrier, which is called activation energy (Ea) (Fig. 1.4). This is true for both exergonic (ΔG < 0, Fig. 1.4a) and endergonic (ΔG > 0, Fig. 1.4b) reactions. The activation energy (Ea) is a free energy term, which includes contributions from both enthalpy and entropy. The state in which the reaction system reaches a maximum energy level in the energy profile (Fig. 1.4a or b) is called transition state. It is also referred to as activated complex in which reorganization of the atoms in the reactant molecules are taking place such that some old bonds are being partially broken, coincident with the partial formation of some new bonds. The transition state (activated complex) is highly energetic and therefore, it is in general very unstable and short‐lived [with the half‐life being in the order of picosecond (10−12 s) for many reactions]. Once formed, it rapidly collapses (dissociates) spontaneously. As a result, the old bonds in the reactants are fully broken, and simultaneously, the new bonds are completely formed, giving the final stable products in the end of the reaction.

Graphs depict the early transition state (a) and late transition state (b).

      

      1.6.2 The Hammond Postulate

      The exact structure of a transition state is in general not measurable due to its instability. It is in‐between the structures of reactants and products, which can be qualitatively predicted and described by the Hammond postulate [3]. It states that the structure of the transition state for a concerted reaction resembles (closer to) the species (reactant or product) to which it is most similar in energy. According to the Hammond postulate, if a concerted reaction is exergonic (or exothermic if entropy of the reaction ΔS is small and negligible) (Fig. 1.4a), the energy of the transition state is most similar to that of the reactant. Therefore, the structure of the transition state resembles the reactant. Such a transition state is called early transition state. If a concerted reaction is endergonic (or endothermic if entropy of the reaction ΔS is small and negligible) (Fig. 1.4b), the energy of the transition state is most similar to that of the product. Therefore, the structure of the transition state resembles the product. Such a transition state is called late transition state.

Schematic illustration of the SN2 reactions that proceed via (a) an early transition state and (b) a late transition state.

      

      1.6.3 The Bell–Evans–Polanyi Principle

      For similar concerted reactions that take place at a certain given temperature, the activation energy (Ea) can be directly correlated to the reaction enthalpy (ΔH) as follows (the Bell–Evans–Polanyi principle):

      where c1 and c2 are positive

Скачать книгу