Secondary Metabolites of Medicinal Plants. Bharat Singh

Чтение книги онлайн.

Читать онлайн книгу Secondary Metabolites of Medicinal Plants - Bharat Singh страница 41

Автор:
Жанр:
Серия:
Издательство:
Secondary Metabolites of Medicinal Plants - Bharat Singh

Скачать книгу

plant Ageratina pichinchensis. Planta Med. 77: 979–983.

      31 Romero-Cerecero, O., Zamilpa, A., Díaz-García, E.R., and Tortoriello, J. (2014). Pharmacological effect of Ageratina pichinchensis on wound healing in diabetic rats and genotoxicity evaluation. J. Ethnopharmacol. 156: 222–227.

      32 Romero-Cerecero, O., Zamilpa, A., and Tortoriello, J. (2015). Ageratina pichinchensis was effective in therapeutic treatment in patients with minor recurrent aphthous stomatitis. J. Ethnopharmacol. 173: 225–230.

      33 Shen, J., Li, X., Wang, D., and Lu, H. (2007). In vitro culture of croftonweed (Ageratina adenophora): considerable potential for fast and convenient plantlet production. Weed Technol. 21: 445–452.

      34 Subba, B. and Kandel, R.C. (2012). Chemical composition and bioactivity of essential oil of Ageratina adenophora from Bhaktapur District of Nepal. J. Nepal Chem. Soc. 30: 78–86.

      35 Tamayo-Castillo, G., Jakupovic, J., Bohlmann, F. et al. (1988). Germacranolides and other constituents from Ageratina species. Phytochemistry 27: 2893–2897.

      36 Tamayo-Castillo, G., Jakupovic, J., Bohlmann, F. et al. (1989). Ent-clerodane derivatives and other constituents from representatives of the subgenus Ageratina. Phytochemistry 28: 139–141.

      37 Tori, M., Ohara, Y., Nakashima, K., and Sono, M. (2001). Thymol derivatives from Eupatorium fortunei. J. Nat. Prod. 64: 1048–1051.

      38 Torrenegra, R., Robles, J., Pedrozo, J., and Pescador, B. (1999). A new diglycoside of diterpene from Ageratina vacciniaefolia. Molecules 4: M94.

      39 Torres, L., Rojas, J., Morales, A. et al. (2013). Chemical composition and evaluation of antibacterial activity of essential oils of Ageratina jahnii and Ageratina pichinchensis collected in Mérida, Venezuela. Bol. Latinoam. Caribe Plant. Med. Aromat. 12: 92–98.

      40 Torres, L., Rojas, J., Rondón, M. et al. (2017). Insecticide activity of Ageratina jahnii and Ageratina pichinchensis (Asteraceae) against Lutzomyia migonei (Diptera: Psychodidae). Adv. Biomed. Res. 6: 53.

      41 Wang, M.-Z., Cai, X.-H., Du, G.-S., and Luo, X.-D. (2007). A novel norditerpene from Eupatorium adenophorum. Z. Naturforsch. B 62: 577–579.

      42 Wu, T.J. and Yang, G.Z. (1994). Chemical constituents of the essential oil of Eupatorium adenophorum Spreng. J Central China Normal Univ. (Nat. Sci. Ed.) 28: 87–90.

      43 Xie, L.J., Zeng, R.S., Bi, H.H. et al. (2010). Allelochemical mediated invasion of exotic plants in China. Allelopathy J. 25: 31–50.

      44 Xu, Y.L., Shan, X.Z., and Wang, Z.Y. (1988). The first report on the chemical constituents of Eupatorium adenophorum. Acta Bot. Yunnanica 10: 238–241.

      45 Yang, S.-L., King, R.A., and Roberts, M.F. (1990). The flavonoids of Ageratina deltoidea. Biochem. Syst. Ecol. 18: 485–486.

      46 Yu, S., Fang, N., and Mabry, T.J. (1986). Flavonoids from Ageratina saltillensis. J. Nat. Prod. 49: 1178–1179.

      47 Zhang, M., Liu, W.-X., Zheng, M.-F. et al. (2013). Bioactive quinic acid derivatives from Ageratina adenophora. Molecules 18: 14096–14104.

      48 Zhengfang, Z., Guangzhong, Y., and Guoqiang, L. (1997). Studies on the chemical constituents of Eupatorium adenophorum Spreng. Nat. Prod. Res. Dev. 9: 35–39.

      49 Zhou, Z.Y., Liu, W.X., Pei, G. et al. (2013). Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J. Agric. Food. Chem. 61: 11792–11799.

      50 Zhu, Z.F., Yang, G.Z., and Li, G.Q. (1995). Studies on the pesticide biological activity substances from plants (III): studies on the chemical constituents of Eupatorium adenophorum Spreng. J. Central China Normal Univ. (Nat. Sci. Ed.) 29: 215–217.

      2.7.1 Ethnopharmacological Properties and Phytochemistry

      Ageratum conyzoides L. (Fam. – Asteraceae) is an annual, branched, height up to 1 m with hairy ovate leaves; is used as purgative, febrifuge, and to treat ulcers as well as cleaning and healing of wounds (Kerharo and Adam 1974), skin and mental problems, headaches and dyspnea (Durodola 1977). It is used as anti-asthmatic, antispasmodic, and hemostatic agent (Kokwaro 1976). The aerial parts are used to treat uterine troubles as well as pneumonia by rubbing on the chest of patients (Katsuri et al. 1973; Abbiw 1990), and leprosy in India (Katsuri et al. 1973). The A. conyzoides showed anti-inflammatory, analgesic, antidiarrheal, insecticidal, antitumor (Sharma and Sharma 1995; Moreira et al. 2007; Adebayo et al. 2010a; Acheampong et al. 2015), antioxidant, gastroprotective, and cytotoxic effects (Galati et al. 2001; Shirwaikar et al. 2003; Preeti et al. 2009; Adebayo et al. 2010b).

      The hexane extract of A. conyzoides showed the presence of 5,6,7,8,3,4,5-heptamethoxyflavone; 5,6,7,8,3-pentamethoxy-4,5-methylenedioxyflavone and coumarin; 5,6,7,8,3-pentamethoxy-4,5-ethylenedioxyflavone; 5,6,7,8,3,4,5-heptamethoxyflavone, ageratochromene and 7-methoxy-2,2-dimethylchromene (Aalbersberg and Singh 1991; Moreira et al. 2007), methoxyflavones, 5,6,8,3′,4′,5′-hexamethoxyflavone and 8-hydroxy-5,6,7,3′,4′,5′-hexamethoxyflavone (González et al. 1991a; Dũng et al. 1989), 5,6,7,3′,4′,5′-hexamethoxyflavone, 5,6,7,8,3′,4′-hexamethoxyflavone, 5,6,7,8,3′,4′,5′-heptamethoxyflavone, 5,6,7,3′, 4′-pentamethoxyflavone, 5,6,7,3′-tetramethoxy-4′,5′-methylenedioxyflavone (Acheampong et al. 2017), ageratochromene, β-caryophyllene, demethoxyageratochromene (Sundufu and Shoushan 2004), (2S)-7,3′,4′-trimethoxyflavanone, (2S)-7-methoxy-3′,4′-methylenedioxyflavone, 5,6,7,8,5′-pentamethoxy-3′,4′-methylenedioxyflavone, 5,2′-dihydroxy-7-methoxyflavone, 2′-O-β-D-glucopyranoside and kaempferol-3-O-α-L-rhamnopyranoside (Munikishore et al. 2013), and 5,6,7,3′,4′,5-hexamethoxyflavone (Horie et al. 1993).

      Other chromene compounds such as encecalin, 6-vinyl-7-methoxy-2,2-dimethylchromene, dihydroencecalin, dihydrodemethoxyencecalin, demethoxyencecalin, demethylencecalin and 2-(1′-oxo-2′-methylpropyl)-2-methyl-6,7-dimethoxychromene, 2,2-dimethylchromene-7-O-β-glucopyranoside, 6-acetyl-2,2′-dimethyl-3,4-dihydrochromene, 6-(1-methoxy ethyl)-7-methoxy-2,2-dimethylchromene, 6-(1-hydroxy ethyl)-7-methoxy-2,2-dimethylchromene, 6-(1-ethoxyethyl)-7-methoxy-2,2-dimethylchromene, 6-angeloyloxy-7-methoxy-2,2-dimethylchromene, encecanescin, 2-(2′-methylethyl)-5,6-dimethoxybenzofuran, 14-hydroxy-2Hβ, 3-dihydroeuparine, 6,7,6′,7′-tetramethoxy-2,2,2′,2′-tetramethyl-3′(4′)-dehydro-3′-4S-bichromene, 3-(2′-methyl propyl)-methyl-6,8-dimethoxychrom-4-one and 2-(2′-methylprop-2′-enyl)-2-methyl-6,7-dimethoxychroman-4-one (Pari et al. 1998; Ahmed et al. 1999; González et al. 1991a; Desai et al. 1973; Srivastava et al. 1985; Katsuri et al. 1973), 5,6,7,8,3′,4′,5′-heptamethoxyflavone (Adesogan and Okunade 1979), 6-(1′-hydroxyethyl)-2,2-dimethylchromene, conyzorigun, and 7-hydroxyl-2,2-dimethylchromene were reported from hexane extract of aerial

Скачать книгу