Physikalische Chemie. Peter W. Atkins

Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 119

Автор:
Жанр:
Серия:
Издательство:
Physikalische Chemie - Peter W. Atkins

Скачать книгу

mbar); an keinem anderen Punkt können die drei Phasen Eis, flüssiges Wasser und Wasserdampf im Gleichgewicht koexistieren. Diese Invarianz des Tripelpunkts nutzt man zur Definition der thermodynamischen Temperaturskala (Abschnitt 3.1.2).

image

      Wie man in Abb. 4-4 erkennt, liegt der Tripelpunkt beim kleinsten Druck, bei dem noch eine flüssige Phase existiert. Wenn die Steigung der Phasengrenzlinie fest/flüssig ähnlich wie in diesem Diagramm verläuft (dies ist der Normalfall), besitzt am Tripelpunkt auch die Temperatur den kleinsten Wert, bei dem noch eine flüssige Phase beobachtet werden kann; die obere Grenze hierfür ist die kritische Temperatur.

      Die Phasenregel

      Die Herleitung der Phasenregel durch J. W. Gibbs ist eine der elegantesten Beweisführungen der chemischen Thermodynamik. Sie gibt an, wie viele Parameter des Systems variiert werden können, ohne dass sich die Zahl und die Art der im Gleichgewicht koexistierenden Phasen ändert. Die Regel beschreibt einen allgemeinen Zusammenhang zwischen der Varianz F, der Anzahl der Komponenten C und der Anzahl der Phasen P für Systeme beliebiger Zusammensetzung:

      Begründung 4-1 Die Phasenregel

      Wir betrachten zunächst den Spezialfall eines Einkomponentensystems, für das die Phasenregel F = 3 – P ergibt. Für zwei Phasen α und β im Gleichgewicht (P = 2, F = 1) bei gegebenen Werten von Druck und Temperatur gilt

image

      Für Wasser und Eis im Gleichgewicht wäre beispielsweise μ(l; p, T) = μ(s; p, T). Diese Beziehung gibt einen Zusammenhang zwischen p und T wieder; das bedeutet, nur eine der beiden Variablen ist unabhängig (so wie x + y = xy eine Gleichung für y als Funktion von x ist: y = x/(x – 1)). Diese Beobachtung steht im Einklang mit F = 1. Für drei Phasen im Gleichgewicht gilt

image

      In dieser Zeile stecken tatsächlich zwei Gleichungen mit zwei Unbekannten, μ(α; p, T) = μ(β; p, T) und μ(β; p, T) = μ(γ; p, T), nur ein einziges Wertepaar (p, T) erfüllt daher dieses Gleichungssystem (ebenso wie das Gleichungssystem x + y = xy und 3xy = xy als einzige Lösung das Wertepaar (x = 2, y = 2) besitzt.) Dies steht im Einklang mit F = 0. Vier Phasen können in einem Einkomponentensystem nicht im Gleichgewicht vorliegen, weil in dem Gleichungssystem

image

      drei Gleichungen für zwei Unbekannte (p und T) vorliegen und es daher keine Lösung besitzt (ähnlich wie das Gleichungssystem x + y = xy,3xy = xy und x + y = 2xy2).

      Im Gleichgewicht hat das chemische Potenzial eines Stoffs in jeder Phase denselben Wert (siehe Abschnitt 4.2.1):

image

      Für jede Komponente müssen demnach P–1 Gleichungen erfüllt sein. Wenn die Anzahl der Komponenten C ist, ergeben sich insgesamt C(P – 1) Gleichungen. Durch jede wird die Anzahl der unabhängigen intensiven Variablen (ausgehend von P(C – 1) + 2) um 1 reduziert; damit ergibt sich für die Anzahl der Freiheitsgrade des Systems

image

      ■ Das Wichtigste in Kürze: (a) Kohlendioxid besitzt ein typisches Phasendiagramm, in dem aber Spuren von schwachen zwischenmolekularen Wechselwirkungen zu erkennen sind. (b) Das Phasendiagramm von Wasser zeigt Anomalien, die mit den ausgedehnten Wasserstoffbrücken zwischen den Molekülen zusammenhängen. (c) Auch Helium zeigt Anomalien (Suprafluidität), die auf seine kleine Masse und die schwachen zwischenatomaren Wechselwirkungen zurückzuführen sind.

      In einem Einkomponentensystem (wie beispielsweise reinem Wasser) ist F = 3 – P. Wenn nur eine einzige Phase vorliegt, ist F = 2, und p und T können unabhängig voneinander variiert werden (zumindest über einen kleinen Bereich), ohne dass sich die Zahl der Phasen ändert. Mit anderen Worten: Eine Phase entspricht einer Fläche im Phasendiagramm. Stehen zwei Phasen miteinander im Gleichgewicht, wird F = 1; das bedeutet, dass man bei festgelegter Temperatur den Druck nicht mehr frei wählen kann. (Bei gegebener Temperatur findet man einen ganz bestimmten Dampfdruck einer Flüssigkeit.) Das Gleichgewicht zweier Phasen entspricht demnach einer Linie im Phasendiagramm. Anstelle der Temperatur können wir auch den Druck frei wählen; das Phasengleichgewicht lässt sich dann aber nur bei einer bestimmten Temperatur realisieren. Jeder Phasenübergang, wie beispielsweise das Gefrieren, erfolgt bei vorgegebenem Druck bei einer ganz bestimmten Temperatur.

image

Скачать книгу