Physikalische Chemie. Peter W. Atkins

Чтение книги онлайн.

Читать онлайн книгу Physikalische Chemie - Peter W. Atkins страница 118

Автор:
Жанр:
Серия:
Издательство:
Physikalische Chemie - Peter W. Atkins

Скачать книгу

unserer Diskussion bildet die Freie Enthalpie einer Substanz – genauer gesagt die molare Freie Enthalpie Gm, die sich im Laufe dieses und der folgenden Kapitel als so wichtig erweisen wird, dass wir ihr einen besonderen Namen geben: das chemische Potenzial μ. Für reine Stoffe ist μ = Gm, d. h. „molare Freie Enthalpie“ und „chemisches Potenzial“ sind Synonyme. In Kapitel 5 werden wir jedoch eine allgemeinere Definition von μ kennen lernen und die weiter reichende Bedeutung dieser Größe besprechen. Die Bezeichnung „chemisches Potenzial“ lässt uns bereits erahnen, dass μ als Maß für die Möglichkeit einer Zustandsänderung der betreffenden Substanz in einem System gelten kann. In diesem Kapitel konzentrieren wir uns dabei zunächst auf das Potenzial eines Stoffs, seinen physikalischen Zustand zu ändern. Die Rolle von μ bei chemischen Umwandlungen wird uns in Kapitel 6 beschäftigen.

       Im Gleichgewicht ist das chemische Potenzial eines Stoffs überall in der Probe gleich groß, unabhängig davon, wie viele Phasen koexistieren.

      Um uns von der Richtigkeit dieser Aussage zu überzeugen, betrachten wir ein System, bei dem das chemische Potenzial an einem Ort μ1 und an einem anderen Ort μ2 beträgt; beide Positionen können in der gleichen oder in zwei verschiedenen Phasen liegen. Wird nun eine Stoffmenge dn vom ersten zum zweiten Ort transportiert, verringert sich die Freie Enthalpie des System um μ1 dn (wenn die Stoffmenge von Ort 1 entnommen wird) und nimmt um μ2 dn zu (wenn der Stoff an Ort 2 wieder zugeführt wird). Die Gesamtänderung der Freien Enthalpie ist damit dG = (μ2μ1)dn. Wenn nun das chemische Potenzial am Ort 1 höher ist als an Ort 2, so nimmt G während des Gesamtprozesses ab; der Prozess verliefe also freiwillig. Ein Gleichgewicht liegt nur vor, wenn sich G bei einem derartigen Prozess nicht ändert, wenn also μ1 = μ2 ist.

      ■ Das Wichtigste in Kürze: (a) Eine Substanz wird durch eine Reihe von physikalischen Parametern charakterisiert, die in ihrem Phasendiagramm angegeben sind. (b) Die Phasenregel stellt eine Verbindung zwischen der Zahl der Variablen her, die verändert werden können, ohne dass sich die Zahl oder die Art der Phasen im Gleichgewicht verändern.

image

      Charakteristische Eigenschaften von Phasenübergängen

      Wenn eine Flüssigkeit in einem offenen Gefäß erhitzt wird, verdampft die Flüssigkeit zunächst an der Oberfläche. Wenn der Dampfdruck gleich dem äußeren Druck ist, kann im gesamten Volumen der Flüssigkeit Verdampfung eintreten und der Dampf kann frei in die Umgebung entweichen. Diesen Vorgang nennt man Sieden und die Temperatur, bei der der Dampfdruck der Flüssigkeit gleich dem äußeren Druck ist, ist die Siedetemperatur bei gegebenem Druck. Für den Spezialfall eines äußeren Drucks von 1 bar spricht man vom Standardsiedepunkt TS; für Wasser liegt er bei 99.6 °C. (Unter Atmosphärendruck, p = 1 atm, liegt der so genannte Normalsiedepunkt von Wasser bei 100 °C.)

image

      Schmelztemperatur nennt man die Temperatur, bei der sich die flüssige und eine feste Phase eines Stoffs im Gleichgewicht befinden. Dies ist gleichzeitig die Erstarrungstemperatur des Stoffs, da Schmelz- und Erstarrungsvorgang bei derselben Temperatur ablaufen. Analog zur Siedetemperatur führt man auch hier einen Standardschmelzpunkt TSm für einen Druck von 0.1 MPa (1 bar) ein (entsprechend ist der Normalschmelzpunkt bei 1 atm definiert; die Unterschiede beider Werte sind für praktische Zwecke meist vernachlässigbar). Die Begriffe Schmelz- und Erstarrungsoder Gefrierpunkt werden synonym verwendet.

Скачать книгу