Genome Engineering for Crop Improvement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genome Engineering for Crop Improvement - Группа авторов страница 18

Genome Engineering for Crop Improvement - Группа авторов

Скачать книгу

S., Park, J., and Kim, J.S. (2014). Cas‐OFFinder: a fast and versatile algorithm that searches for potential off‐target sites of Cas9 RNA‐guided endonucleases. Bioinformatics 30 (10): 1473–1475.

      6 Boch, J., Scholze, H., Schornack, S. et al. (2009). Breaking the code of DNA binding specificity of TAL‐type III effectors. Science 326: 1509–1512.

      7 Brazelton, V.A. Jr., Zarecor, S., Wright, D.A. et al. (2015). A quick guide to CRISPR sgRNA design tools. GM Crops and Food 6 (4): 266–276.

      8 Briggs, A.W., Rios, X., Chari, R. et al. (2012). Iterative capped assembly: rapid and scalable synthesis of repeat‐module DNA such as TAL effectors from individual monomers. Nucleic Acids Research 40 (15): e117–e117.

      9 Butler, N.M., Baltes, N.J., Voytas, D.F., and Douches, D.S. (2016). Geminivirus‐mediated genome editing in potato (Solanum tuberosum L.) using sequence‐specific nucleases. Frontiers in Plant Science 7: 1045.

      10 Butt, H., Eid, A., Ali, Z. et al. (2017). Efficient CRISPR/Cas9‐mediated genome editing using a chimeric single‐guide RNA molecule. Frontiers in Plant Science 8: 1441.

      11 Cai, C.Q., Doyon, Y., Ainley, W.M. et al. (2009). Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molecular Biology 69: 699–709.

      12  Cermak, T., Doyle, E.L., Christian, M. et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector‐based constructs for DNA targeting. Nucleic Acids Research 39 (12): e82–e82.

      13 Chandrasekaran, J., Brumin, M., Wolf, D. et al. (2016). Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology 17 (7): 1140–1153.

      14 Charrier, A., Vergne, E., Dousset, N. et al. (2019). Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR‐Cas9 system. Frontiers in Plant Science 10: 40.

      15 Chen, H., Choi, J., and Bailey, S. (2014). Cut site selection by the two nuclease domains of the Cas9 RNA‐guided endonuclease. Journal of Biological Chemistry 289 (19): 13284–13294.

      16 Chen, K., Wang, Y., Zhang, R. et al. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70: 667–697.

      17 Chen, W., Dong, Y., Saqib, H.S.A. et al. (2020). Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. Insect Biochemistry and Molecular Biology 119: 103316.

      18 Cho, S.W., Kim, S., Kim, Y. et al. (2014). Analysis of off‐target effects of CRISPR/Cas‐derived RNA‐guided endonucleases and nickases. Genome Research 24: 132–141.

      19 Christian, M., Cermak, T., Doyle, E.L. et al. (2010). Targeting DNA double‐strand breaks with TAL effector nucleases. Genetics 186: 757–761.

      20 Christian, M., Qi, Y., Zhang, Y., and Voytas, D.F. (2013). Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3: Genes, Genomes, Genetics 3 (10): 1697–1705.

      21 Clasen, B.M., Stoddard, T.J., Luo, S. et al. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal 14 (1): 169–176.

      22 Cong, L., Ran, F.A., Cox, D. et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.

      23 Coordinators, N.R. (2013). Database resources of the national center for biotechnology information. Nucleic Acids Research 41 (Database issue): D8.

      24 Cradick, T.J., Qiu, P., Lee, C.M. et al. (2014). COSMID: a web‐based tool for identifying and validating CRISPR/Cas off‐target sites. Molecular Therapy – Nucleic Acids 3: e214.

      25 Curtin, S.J., Zhang, F., Sander, J.D. et al. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc‐finger nucleases. Plant Physiology 156 (2): 466–473.

      26 Doench, J.G., Hartenian, E., Graham, D.B. et al. (2014). Rational design of highly active sgRNAs for CRISPR‐Cas9–mediated gene inactivation. Nature Biotechnology 32 (12): 1262.

      27 Dreier, B., Beerli, R.R., Segal, D.J. et al. (2001). Development of zinc finger domains for recognition of the 5′‐ANN‐3′ family of DNA sequences and their use in the construction of artificial transcription factors. Journal of Biological Chemistry 276 (31): 29466–29478.

      28 Du, H., Zeng, X., Zhao, M. et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217: 90–97.

      29 El‐Mounadi, K., Morales‐Floriano, M.L., and Garcia‐Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR‐Cas9. Frontiers in Plant Science 11: 56.

      30 Endo, A., Masafumi, M., Kaya, H., and Toki, S. (2016). Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports 6: 38169.

      31 Endo, M., Mikami, M., and Toki, S. (2016). Biallelic gene targeting in rice. Plant Physiology 170 (2): 667–677.

      32  Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One 3 (11): e3647.

      33 Fan, D., Liu, T., Li, C. et al. (2015). Efficient CRISPR/Cas9‐mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5: 12217.

      34 Fan, Y., Xin, S., Dai, X. et al. (2020). Efficient genome editing of rubber tree (hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops and Products 146: 112146.

      35 Fauser, F., Schiml, S., and Puchta, H. (2014). Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal 79: 348–359.

      36 Feng, Z., Mao, Y., Xu, N. et al. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Casinduced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111: 4632–4637.

      37 Fu, Y., Foden, J.A., Khayter, C. et al. (2013). High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells. Nature Biotechnology 31 (9): 822–826.

      38 Fu, Y., Sander, J.D., Reyon, D. et al. (2014). Improving CRISPR‐Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32 (3): 279.

      39 Gallego‐Bartolomé, J., Gardiner, J., Liu, W. et al. (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences 115 (9): E2125–E2134.

      40 Gao, J., Wang, G., Ma, S. et al. (2015). CRISPR/Cas9‐mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology 87 (1–2): 99–110.

      41 Gao, L., Cox, D.B., Yan, W.X. et al. (2017). Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology 35 (8): 789.

      42 Garneau, J.E., Dupuis, M.È., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (7320): 67–71.

      43 Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences 109 (39): E2579–E2586.

      44 Gasparis,

Скачать книгу