Genome Engineering for Crop Improvement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genome Engineering for Crop Improvement - Группа авторов страница 19

Genome Engineering for Crop Improvement - Группа авторов

Скачать книгу

Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cell 8 (8): 782.

      45 González, M.N., Massa, G.A., Andersson, M. et al. (2020). Reduced enzymatic Browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Frontiers in Plant Science 10: 1649.

      46 Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. (2014). Highly specific and efficient CRISPR/Cas9‐catalyzed homology‐directed repair in drosophila. Genetics 196 (4): 961–971.

      47 Grissa, I., Vergnaud, G., and Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research 35 (suppl_2): W52–W57.

      48 Guilinger, J.P., Thompson, D.B., and Liu, D.R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology 32: 577–582.

      49 Han, Y.J. and Kim, J.I. (2019). Application of CRISPR/Cas9‐mediated gene editing for the development of herbicide‐resistant plants. Plant Biotechnology Reports 13: 447–457.

      50 Heigwer, F., Kerr, G., Walther, N. et al. (2013). E‐TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Research 41 (20): e190–e190.

      51  Heigwer, F., Kerr, G., and Boutros, M. (2014). E‐CRISP: fast CRISPR target site identification. Nature Methods 11 (2): 122.

      52 Huang, P., Xiao, A., Zhou, M. et al. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology 29 (8): 699–700.

      53 Hummel, A.W., Chauhan, R.D., Cermak, T. et al. (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal 16 (7): 1275–1282.

      54 Iqbal, Z., Sattar, M.N., and Shafiq, M. (2016). CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science 7: 475.

      55 Jang, G. and Joung, Y.H. (2019). CRISPR/Cas‐mediated genome editing for crop improvement: current applications and future prospects. Plant Biotechnology Reports 13 (1): 1–10.

      56 Jansing, J., Schiermeyer, A., Schillberg, S. et al. (2019). Genome editing in agriculture: technical and practical considerations. International Journal of Molecular Sciences 20 (12): 2888.

      57 Ji, X., Wang, D., and Gao, C. (2015). CRISPR editing‐mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Science Bulletin 60: 1332.

      58 Jia, H., Orbovic, V., Jones, J.B., and Wang, N. (2016). Modification of the PthA4 effector binding elements in type I Cs LOB 1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection. Plant Biotechnology Journal 14 (5): 1291–1301.

      59 Jia, H., Zhang, Y., Orbović, V. et al. (2017). Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15 (7): 817–823.

      60 Jiang, W., Zhou, H., Bi, H. et al. (2013). Demonstration of CRISPR/Cas9/sgRNA‐mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41 (20): e188–e188.

      61 Jiang, W.Z., Henry, I.M., Lynagh, P.G. et al. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal 15 (5): 648–657.

      62 Jiménez, A., Hoff, B., and Revuelta, J.L. (2020). Multiplex genome editing in Ashbya gossypii using CRISPR‐Cpf1. New Biotechnology 57: 29–33.

      63 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337 (6096): 816–821.

      64 Kang, B.C., Yun, J.Y., Kim, S.T. et al. (2018). Precision genome engineering through adenine base editing in plants. Nature Plants 4 (7): 427–431.

      65 Kaur, K., Tandon, H., Gupta, A.K., and Kumar, M. (2015). CrisprGE: a central hub of CRISPR/Cas‐based genome editing. Database 2015: bav055.

      66 Kim, H. and Kim, J.S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15 (5): 321–334.

      67 Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences 93 (3): 1156–1160.

      68 Kim, H.J., Lee, H.J., Kim, H. et al. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Research 19 (7): 1279–1288.

      69 Kim, D., Kim, J., Hur, J.K. et al. (2016). Genome‐wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology 34 (8): 863.

      70  Kim, H.K., Song, M., Lee, J. et al. (2017). In vivo high‐throughput profiling of CRISPR–Cpf1 activity. Nature Methods 14 (2): 153.

      71 Kim, H., Kim, S.T., Ryu, J. et al. (2017). CRISPR/Cpf1‐mediated DNA‐free plant genome editing. Nature Communications 8 (1): 1–7.

      72 Klap, C., Yeshayahou, E., Bolger, A.M. et al. (2017). Tomato facultative parthenocarpy results from Sl AGAMOUS‐LIKE 6 loss of function. Plant Biotechnology Journal 15 (5): 634–647.

      73 Kleinstiver, B.P., Tsai, S.Q., Prew, M.S. et al. (2016). Genome‐wide specificities of CRISPR‐Cas Cpf1 nucleases in human cells. Nature Biotechnology 34 (8): 869.

      74 Lawrenson, T., Shorinola, O., Stacey, N. et al. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA‐guided Cas9 nuclease. Genome Biology 16 (1): 258.

      75 Lee, K., Zhang, Y., Kleinstiver, B.P. et al. (2019). Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal 17 (2): 362–372.

      76 Lei, Y., Lu, L., Liu, H.Y. et al. (2014). CRISPR‐P: a web tool for synthetic single‐guide RNA design of CRISPR‐system in plants. Molecular Plant 7 (9): 1494–1496.

      77 Li, T., Huang, S., Jiang, W.Z. et al. (2011). TAL nucleases (TALNs), hybrid proteins composed of TAL effectors and FokI DNAcleavage domain. Nucleic Acids Research 39: 359–372.

      78 Li, T., Liu, B., Spalding, M.H. et al. (2012). High‐efficiency TALEN‐based gene editing produces disease‐resistant rice. Nature Biotechnology 30 (5): 390.

      79 Li, J.F., Norville, J.E., Aach, J. et al. (2013). Multiplex and homologous recombination‐mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31: 688–691.

      80 Li, Z., Liu, Z.B., Xing, A. et al. (2015). Cas9‐guide RNA directed genome editing in soybean. Plant Physiology 169 (2): 960–970.

      81 Li, J., Meng, X., Zong, Y. et al. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants 2 (10): 1–6.

      82 Li, M., Li, X., Zhou, Z. et al. (2016). Reassessment of the four yield‐related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science 7: 377.

      83 Li, X., Zhou, W., Ren, Y. et al. (2017). High‐efficiency breeding of early‐maturing rice cultivars via CRISPR/Cas9‐mediated genome editing. Journal of Genetics and Genomics= Yi chuan xue bao 44 (3): 175.

      84 Li,

Скачать книгу