Genome Engineering for Crop Improvement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genome Engineering for Crop Improvement - Группа авторов страница 20

Genome Engineering for Crop Improvement - Группа авторов

Скачать книгу

xue bao 44 (9): 465.

      85 Li, T., Yang, X., Yu, Y. et al. (2018). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology 36 (12): 1160–1163.

      86 Li, B., Rui, H., Li, Y. et al. (2019). Robust CRISPR/Cpf1 (Cas12a)‐mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnology Journal 17 (10): 1862–1864.

      87 Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41 (2): 63–68.

      88 Lin, Y., Fine, E.J., Zheng, Z. et al. (2014). SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Research 42 (6): e47–e47.

      89 Liu, Y., Han, J., Chen, Z. et al. (2017). Engineering cell signaling using tunable CRISPR–Cpf1‐based transcription factors. Nature Communications 8 (1): 1–8.

      90  Lloyd, A., Plaisier, C.L., Carroll, D., and Drews, G.N. (2005). Targeted mutagenesis using zinc‐finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences 102 (6): 2232–2237.

      91 Lowder, L.G., Zhang, D., Baltes, N.J. et al. (2015). A CRISPR/ Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology 169: 971–985.

      92 Lowder, L.G., Zhou, J., Zhang, Y. et al. (2018). Robust transcriptional activation in plants using multiplexed CRISPR‐Act2.0 and mTALE‐act systems. Molecular Plant 11: 245–256.

      93 Ma, M., Ye, A.Y., Zheng, W., and Kong, L. (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Research International 2013: 270805.

      94 Maeder, M.L., Thibodeau‐Beganny, S., Osiak, A. et al. (2008). Rapid “open‐source” engineering of customized zinc‐finger nucleases for highly efficient gene modification. Molecular Cell 31 (2): 294–301.

      95 Mahfouz, M.M., Li, L., Shamimuzzaman, M. et al. (2011). De novo‐engineered transcription activator‐like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double‐strand breaks. Proceedings of the National Academy of Sciences of the United States of America 108: 2623–2628.

      96 Mahfouz, M.M., Piatek, A., and Stewart, C.N. Jr. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal 12 (8): 1006–1014.

      97 Makarova, K.S., Haft, D.H., Barrangou, R. et al. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology 9 (6): 467–477.

      98 Mali, P., Aach, J., Stranges, P.B. et al. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 31: 833–838.

      99 Malnoy, M., Viola, R., Jung, M.H. et al. (2016). DNA‐free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science 7 (1904).

      100 Mandell, J.G. and Barbas, C.F. (2006). Zinc finger tools: custom DNA‐binding domains for transcription factors and nucleases. Nucleic Acids Research 34 (suppl_2): W516–W523.

      101 Marton, I., Zuker, A., Shklarman, E. et al. (2010). Nontransgenic genome modification in plant cells. Plant Physiology 154 (3): 1079–1087.

      102 Miao, J., Guo, D., Zhang, J. et al. (2013). Targeted mutagenesis in rice using CRISPR‐Cas system. Cell Research 23 (10): 1233–1236.

      103 Miroshnichenko, D.N., Shulga, O.A., Timerbaev, V.R., and Dolgov, S.V. (2019). Achievements, challenges, and prospects in the production of nontransgenic, genome‐edited plants. Applied Biochemistry and Microbiology 55 (9): 825–845.

      104 Montague, T.G., Cruz, J.M., Gagnon, J.A. et al. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42 (W1): W401–W407.

      105 Moon, S.B., Lee, J.M., Kang, J.G. et al. (2018). Highly efficient genome editing by CRISPR‐Cpf1 using CRISPR RNA with a uridinylate‐rich 3′‐overhang. Nature Communications 9 (1): 1–11.

      106 Moscou, M.J. and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TALeffectors. Science 326: 1501.

      107 Naito, Y., Hino, K., Bono, H., and Ui‐Tei, K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off‐target sites. Bioinformatics 31 (7): 1120–1123.

      108 Nakajima, I., Ban, Y., Azuma, A. et al. (2017). CRISPR/Cas9‐mediated targeted mutagenesis in grape. PLoS One 12 (5): e0177966.

      109  Neff, K.L., Argue, D.P., Ma, A.C. et al. (2013). Mojo hand, a TALEN design tool for genome editing applications. BMC Bioinformatics 14 (1): 1.

      110 Nekrasov, V., Wang, C., Win, J. et al. (2017). Rapid generation of a transgene‐free powdery mildew resistant tomato by genome deletion. Scientific Reports 7 (1): 1–6.

      111 Nishitani, C., Hirai, N., Komori, S. et al. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports 6 (1): 1–8.

      112 O'Brien, A. and Bailey, T.L. (2014). GT‐Scan: identifying unique genomic targets. Bioinformatics 30 (18): 2673–2675.

      113 Odipio, J., Alicai, T., Ingelbrecht, I. et al. (2017). Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science 8: 1780.

      114 Ortigosa, A., Gimenez‐Ibanez, S., Leonhardt, N., and Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9‐mediated editing of Sl JAZ 2. Plant Biotechnology Journal 17 (3): 665–673.

      115 Osakabe, K., Osakabe, Y., and Toki, S. (2010). Site‐directed mutagenesis in Arabidopsis using custom‐designed zinc finger nucleases. Proceedings of the National Academy of Sciences 107 (26): 12034–12039.

      116 Pabo, C.O., Peisach, E., and Grant, R.A. (2001). Design and selection of novel Cys2His2 zinc finger proteins. Annual Review of Biochemistry 70: 313–340.

      117 Park, J., Bae, S., and Kim, J.S. (2015). Cas‐designer: a web‐based tool for choice of CRISPR‐Cas9 target sites. Bioinformatics 31 (24): 4014–4016.

      118 Parry, M.A.J. and Hawkesford, M.J. (2012). An integrated approach to crop genetic improvement F. Journal of Integrative Plant Biology 54 (4): 250–259.

      119 Peng, A., Chen, S., Lei, T. et al. (2017). Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnology Journal 15 (12): 1509–1519.

      120 Prykhozhij, S.V., Vinothkumar Rajan, D.G., and Berman, J.N. (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10 (3): e0119372.

      121 Qi, L.S., Larson, M.H., Gilbert, L.A. et al. (2013). Repurposing CRISPR as an RNA‐guided platform for sequence‐specific control of gene expression. Cell 152 (5): 1173–1183.

      122 Ramirez, C.L., Foley, J.E., Wright, D.A. et al. (2008). Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods 5 (5): 374–375.

      123 Ran, F.A., Hsu, P.D., Lin, C.Y. et al. (2013). Double nicking by RNA‐guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389.

      124 Reyon, D., Kirkpatrick, J.R., Sander, J.D. et al. (2011). ZFNGenome: a comprehensive

Скачать книгу