Biosurfactants for a Sustainable Future. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biosurfactants for a Sustainable Future - Группа авторов страница 30

Biosurfactants for a Sustainable Future - Группа авторов

Скачать книгу

Concerns (ed. A. Molnar). Nova Publishers: New York.

      20 20 Kaspar, F., Neubauer, P., and Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J. Nat. Prod. 82: 2038–2053.

      21 21 Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97: 205–253.

      22 22 Zana, R. and Xia, J. (eds.) (2004). Gemini Surfactants. Synthesis, Interfacial and Solution ‐Phase Behavior, and Applications, Surfactants Science Series. New York: Dekker.

      23 23 Fuhrhop, J.‐H. and Wang, T. (2004). Bolaamphiphiles. Chem. Rev. 104: 2901–2937.

      24 24 Gouzy, M.‐F., Guidetti, B., Andre‐Barres, C. et al. (2001). Aggregation behavior in aqueous solutions of a new class of asymmetric bipolar Amphiphiles investigated by surface tension measurements. J. Colloid Interface Sci. 239: 517–521.

      25 25 Guilbot, J., Benvegnu, T., Legros, N. et al. (2001). Efficient synthesis of unsymmetrical bolaamphiphiles for spontaneous formation of vesicles and disks with a transmembrane organization. Langmuir 17: 613–618.

      26 26 Baccile, N., Delbeke, E.I.P., Brennich, M. et al. (2019). Asymmetrical, symmetrical, divalent, and Y‐shaped (bola)amphiphiles: the relationship between the molecular structure and self‐assembly in amino derivatives of Sophorolipid biosurfactants. J. Phys. Chem. B 123: 3841–3858.

      27 27 Hofmann, A.F. and Mysels, K.J. (1988). Bile salts as biological surfactants. Colloids Surf. 30: 145–173.

      28 28 Small, D.M. (1971). The physical chemistry of Cholanic acids. In: The Bile Acids, Chemistry, Physiology, and Metabolism (eds. P.P. Nair and D. Kritchevski). Plenum Press: New York.

      29 29 Savage, P.B., Li, C., Taotafa, U. et al. (2002). Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol. Lett. 217: 1–7.

      30 30 Savage, P.B. (2002). Design, synthesis and characterization of cationic peptide and steroid antibiotics. Eur. J. Org. Chem. 759‐768.

      31 31 Traube, I. (1940). The earliest history of capillary chemistry. J. Chem. Educ. 17: 324–329.

      32 32 Guthrie, F. (1864). II. On drops. Proc. R. Soc. London, Ser. B 13: 444–457.

      33 33 Guthrie, F. (1864). On drops. Part II. Proc. R. Soc. London, Ser. B 13: 457–483.

      34 34 Musculus, C. (1864). Ueber die Veränderungen der Molecularcohäsion des Wassers (about the changes of the molecular cohesion of water). Chem. Zentralbl. 922.

      35 35 Yadav, J.B. (2010). Advanced Practical Physical Chemistry. India: Krishna Prakashan Media.

      36 36 Dorsey, N.E. (1926). Measurement of the surface tension. Sci. Paper 21: 563–595.

      37 37 Tate, T. (1864). On the magnitude of a drop of liquid formed under different circumstances. Philos. Mag. 27: 176–180.

      38 38 Milner, S.R. (1907). IV. On surface concentration, and the formation of liquid films. London, Edinburgh Dublin Philos. Mag. J. Sci. 13: 96–110.

      39 39 Langmuir, I. (1917). The shapes of group molecules forming the surfaces of liquids. Proc. Natl. Acad. Sci. USA 3: 251–257.

      40 40 Malfitano, G. (1909). On the properties of colloidal particles called micellae. Compt. Rend. 148: 1045.

      41 41 Wyrouboff, G. (1901). Some remarks over the colloids. Bull. Soc. Chim. Fr. 25: 1016–1022.

      42 42 McBain, J.W. and Salmon, C.S. (1920). Colloidal electrolytes. Soap solutions and their constitution. J. Am. Chem. Soc. 42: 426–460.

      43 43 Laing, M.E. and McBain, J.W. (1920). Investigations of sodium oleate solutions in the three physical states of curd, gel and sol. J. Chem. Soc. Trans. 117: 1508–1528.

      44 44 McBain, J.W. and Jenkins, W.J. (1922). Ultrafiltration of soap solutions. Sodium oleate and potassium laurate. J. Chem. Soc., Trans. 121: 2325–2344.

      45 45 Grindley, J. and Bury, C.R. (1929). The densities of butyric acid–water mixtures. J. Chem. Soc.: 679–684.

      46 46 Davies, D.G. and Bury, C.R. (1930). The partial specific volume of potassium octoate in aqueous solution. J. Chem. Soc.: 2263–2267.

      47 47 Powney, J. and Addison, C.C. (1937). The properties of detergent solutions. II. The surface and interfacial tensions of aqueous solutions of alkyl sodium sulfates. Trans. Faraday Soc. 33: 1243–1253.

      48 48 Krafft, F. and Wiglow, H. (1895). Behaviour of the alkali salts of the fatty acids and of soaps in presence of water. Ber. Dtsch. Chem. Ges. 28: 2566–2573, 2573–2582.

      49 49 Hutchinson, E., Inaba, A., and Baley, L.G. (1955). The properties of colloidal electrolyte solutions. Z. Phys. Chem. 5: 344–371.

      50 50 Shinoda, K. and Hutchinson, E. (1962). Pseudo‐phase separation model for thermodynamic calculations on micellar solutions. J. Phys. Chem. 66: 577–582.

      51 51 Nilsson, G. (1957). The adsorption of Tritiated sodium dodecyl sulfate at the solution surface measured with a windowless, high humidity gas flow proportional counter. J. Phys. Chem. 57: 1135–1142.

      52 52 Allen, G.D. (1915). The determination of the bile salts in urine by means of the surface tension method. J. Biol. Chem. 22: 505–524.

      53 53 Reis, S., Guimaraes Moutinho, C., Matos, C. et al. (2004). Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal. Biochem. 334: 117–126.

      54 54 Atkins, P.W. and de Paula, J. (2002). Physical Chemistry, 7e. Oxford: Oxford University.

      55 55 Menger, F.M., Shi, L., and Rizvi, S.A.A. (2009). Re‐evaluating the Gibbs analysis of surface tension at the air/water Interface. J. Am. Chem. Soc. 131: 10380–10381.

      56 56 Menger, F.M. and Rizvi, S.A.A. (2011). Relationship between surface tension and surface coverage. Langmuir 27: 13975–13977.

      57 57 Li, P.X., Thomas, R.K., and Penfold, J. (2014). Limitations in the use of surface tension and the Gibbs equation to determine surface excesses of cationic surfactants. Langmuir 30: 6739–6747.

      58 58 Xu, H., Li, P.X., Ma, K. et al. (2013). Limitations in the application of the Gibbs equation to anionic surfactants at the air/water surface: Sodium dodecylsulfate and sodium dodecylmonooxyethylenesulfate above and nelow the CMC. Langmuir 29: 9335–9351.

      59 59 Tartar, H.V. and Wright, K.A. (1939). Sulfonates. III. Solubilities, micelle formation and hydrates of the sodium salts of the higher alkyl sulfonates. J. Am. Chem. Soc. 61: 539–544.

      60 60 Wright, K.A. and Tartar, H.V. (1939). Studies of sulfonates. IV. Densities and viscosities of sodium dodecyl sulfonate solutions in relation to micelle formation. J. Am. Chem. Soc. 61: 544–549.

      61 61 Wright, K.A., Abbott, A.D., Sivertz, V., and Tartar, H.V. (1939). Sulfonates. V. Electrical conductance of sodium decyl‐, dodecyl‐ and hexadecyl‐sulfonate solutions at 40°, 60° and 80°. Micelle formation. J. Am. Chem. Soc. 61: 549–551.

      62 62 Hartley, G.S. (1936). Critical concentration for micelles in solutions of cetanesulfonic acid. J. Am. Chem. Soc. 58: 2347–2354.

      63 63 Hartley, G.S. (1939). Ion aggregation in solutions of salts with

Скачать книгу