Biosurfactants for a Sustainable Future. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biosurfactants for a Sustainable Future - Группа авторов страница 33

Biosurfactants for a Sustainable Future - Группа авторов

Скачать книгу

(2003). From vesicle size distributions to bilayer elasticity via cryo‐transmission and freeze‐fracture electron microscopy. Langmuir 19: 5632–5639.

      148 148 Terech, P. and Talmon, Y. (2002). Aqueous suspensions of steroid nanotubules: structural and rheological characterizations. Langmuir 18: 7240–7244.

      149 149 Meijide, F., Trillo, J.V., de Frutos, S. et al. (2012). Formation of tubules by p‐tert‐butylphenylamide derivatives of chenodeoxycholic and ursodeoxycholic acids in aqueous solution. Steroids 77: 1205–1211.

      150 150 Soto, V.H., Jover, A., Meijide, F. et al. (2007). Supramolecular structures generated by a p‐tert‐butylphenyl‐amide derivative of cholic acid. From vesicles to molecular tubes. Adv. Mater. 19: 1752–1756.

      151 151 Menger, F.M. and Littau, C.A. (1991). Gemini‐surfactants: Synthesis and properties. J. Am. Chem. Soc. 113: 1451–1452.

      152 152 Menger, F.M. and Littau, C.A. (1993). Gemini surfactants: A new class of self‐assembling molecules. J. Am. Chem. Soc. 115: 10083–10090.

      153 153 Peresypkin, A.V. and Menger, F.M. (1999). Zwitterionic Geminis. Coacervate formation from a single organic compound. Org. Lett. 1: 1347–1350.

      154 154 Nitschke, M. and Pastore, G.M. (2002). Biosurfactants: Properties and applications. Quim. Nova 25: 772–776.

      155 155 Otzen, D.E. (2017). Biosurfactants and surfactants interacting with membranes and proteins: Same but different? Biochim. Biophys. Acta 1859: 639–649.

      156 156 Rosenberg, E. and Ron, E.Z. (1999). High‐ and low‐molecular‐mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154–162.

      157 157 Mnif, I. and Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 71: 100–112.

      158 158 Sałek, K. and Euston, S.R. (2019). Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem. 85: 143–155.

      159 159 Ishigami, Y. and Suzuki, S. (1997). Development of biochemicals‐functionalization of biosurfactants and natural dyes. Prog. Org. Coat. 31: 51–61.

      160 160 Matsuoka, K., Miyajima, R., Ishida, Y. et al. (2016). Aggregate formation of glycyrrhizic acid. Colloids Surf., A 500: 112–117.

      161 161 Garofalakis, G., Murray, B.S., and Sarney, D.B. (2000). Surface activity and critical aggregation concentration of pure sugar esters with different sugar head groups. J. Colloid Interface Sci. 229: 391–398.

      162 162 Goueth, P.Y., Gogalis, P., Bikanga, R. et al. (1994). Synthesis of monoesters as surfactants and drugs from D‐glucose. J. Carbohydr. Chem. 13: 249–272.

      163 163 Sarney, D.B. and Vulfson, E.N. (1995). Application of enzymes to the synthesis of surfactants. Trends Biotechnol. 13: 164–172.

      164 164 Saini, H.S., Barragan‐Huerta, B.E., Lebron‐Paler, A. et al. (2008). Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9‐3 and its physicochemical and biological properties. J. Nat. Prod. 71: 1011–1015.

      165 165 Laycock, M.V., Hildebrand, P.D., Thibault, P. et al. (1991). Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J. Agric. Food Chem. 39: 483–489.

      166 166 Neu, T.R., Haertner, T., and Poralla, K. (1990). Surface active properties of viscosin: A peptidolipid antibiotic. Appl. Microbiol. Biotechnol. 32: 518–520.

      167 167 Banipal, P.K., Banipal, T.S., Lark, B.S., and Ahluwalia, J.C. (1997). Partial molar heat capacities and volumes of some mono‐, di‐ and tri‐saccharides in water at 298.15, 308.15 and 318.15 K. J. Chem. Soc. Faraday Trans. 93: 81–87.

      168 168 Varga, I., Mészáros, R., Stubenrauch, C., and Gilányi, T. (2012). Adsorption of sugar surfactants at the air/water interface. J. Colloid Interface Sci. 379: 78–83.

      169 169 Ribeiro, I.A.C., Faustino, C.M.C., Guerreiro, P.S. et al. (2015). Development of novel sophorolipids with improved cytotoxic activity toward MDA‐MB‐231 breast cancer cells. J. Mol. Recognit. 28: 155–165.

      170 170 Angarten, R.G. and Loh, W. (2014). Thermodynamics of micellization of homologous series of alkyl mono and di‐glucosides in water and in heavy water. J. Chem. Thermodyn. 73: 218–223.

      171 171 Gill, S.J. and Wadsö, I. (1976). An equation of state describing hydrophobic interactions. Proc. Natl. Acad. Sci. U. S. A. 73: 2955–2958.

      172 172 Majhi, P.R. and Blume, A. (2001). Thermodynamic vharacterization of temperature‐induced micellization and demicellization of detergents studied by differential scanning calorimetry. Langmuir 17: 3844–3851.

      173 173 Chen, M., Penfold, J., Thomas, R.K. et al. (2010). Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Langmuir 26: 17958–17968.

      174 174 Chen, M., Penfold, J., Thomas, R.K. et al. (2010). Solution self‐assembly and adsorption at the air−water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures. Langmuir 26: 18281–18292.

      175 175 Ishigami, Y., Gama, Y., Nagahora, H. et al. (1987). The pH‐sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem. Lett.: 16(5):763–16(5):766.

      176 176 Whang, L.‐M., Liu, P.‐W.G., Ma, C.‐C., and Cheng, S.‐S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel‐contaminated water and soil. J. Hazard. Mater. 151: 155–163.

      177 177 Onaizi, S.A., Nasser, M.S., and Twaiq, F.A. (2012). Micellization and interfacial behavior of a synthetic surfactant‐biosurfactant mixture. Colloids Surf., A 415: 388–393.

      178 178 Otto, R.T., Daniel, H.‐J., Pekin, G. et al. (1999). Production of sophorolipids from whey. II. Product composition, surface active properties, cytotoxicity and stability against hydrolases by enzymatic treatment. Appl. Microbiol. Biotechnol. 52: 495–501.

      179 179 Chen, M., Dong, C., Penfold, J. et al. (2011). Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface. Langmuir 27: 8854–8866.

      180 180 Ashby, R.D., Solaiman, D.K.Y., and Foglia, T.A. (2008). Property control of sophorolipids: Influence of fatty acid substrate and blending. Biotechnol. Lett. 30: 1093–1100.

      181 181 Rosen, M.J., Mathias, J.H., and Davenport, L. (1999). Aberrant aggregation behavior in cationic gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir 15: 7340–7346.

      182 182 Rosen, M.J., Cohen, A.W., Dahanayake, M., and Hua, X.Y. (1982). Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2‐dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. J. Phys. Chem. 86: 541–545.

      183 183 Bakshi, M.S., Singh, K., Kaur, G. et al. (2006). Spectroscopic investigation on the hydrophobicity in the mixtures of nonionic plus twin tail alkylammonium bromide surfactants. Colloids Surf., A 278: 129–139.

      184 184 Chen, L.‐J., Lin, S.‐Y., Huang, C.‐C., and Chen, E.‐M. (1998). Temperature dependence of critical micelle concentration of polyoxyethylenated non‐ionic surfactants. Colloids Surf., A 135: 175–181.

      185 185 Sulthana,

Скачать книгу